Zusammenfassung
Mit der Identifizierung und Charakterisierung von zahlreichen neuronalen Mediatoren
gewann die Forschung der Innervierung der Atemwege in den letzten Jahren zunehmend
an Bedeutung. Eine Reihe von Stimuli wie Capsaicin, Bradykinin, hyperosmotische Salzlösung,
Zigarettenrauch, Allergene, Ozon, pro-inflammatorische Mediatoren und kalte trockene
Luft sind in der Lage, sensible Atemwegsneurone zu aktivieren. Allergene können eine
Freisetzung von Substanz P (SP) and Neurokinin A (NKA) induzieren. SP wird in den
Zellkörpern der Atemwegsneurone des Ganglion trigeminale, des Ganglion jugulare und
des Ganglion nodosum synthetisiert. Tachykinine haben einen pro-inflammatorischen
Effekt auf die Atemwege und sind an neurogenen Entzündungen in den Atemwegen beteiligt.
Weitere Tachykinine wie Virokinin und Hemokinin wurde vor kurzem entdeckt und charakterisiert.
In den Atemwegen werden Tachykinine nach ihrer Freisetzung von Neutraler Endopeptidase
(NEP) und einem angiotensinumwandelnden Enzym abgebaut. Tachykinine steuern den Tonus
der glatten Atemwegsmuskulatur, die Schleimsekretion, die bronchialen Blutzirkulation
sowie die Immunzellen nach Aktivierung des Neurokinin-1-(NK-1)- oder Neurokinin-2-(NK-2)-Rezeptors
und sind vermutlich an der Pathogenese von Asthma bronchiale und COPD beteiligt. Während
unterschiedliche Aspekte der neurogenen Entzündung im Tiermodell bisher mehr untersucht
wurden, ist über die Rolle der neurogenen Atemwegsentzündung beim Menschen wenig bekannt.
Um die genauere Rolle der sensiblen Atemwegsinnervation und der Tachykinine bei chronisch-entzündlichen
Atemwegserkrankung wie Asthma bronchiale und COPD verstehen zu können, sind in Zukunft
jedoch weitere Studien im Hinblick auf die Aktivierung der sensiblen Nervenfasern
und die Interaktion zwischen Entzündungszellen und Atemwegsneuronen erforderlich.
Abstract
The airway nerve has gained importance in the field of respiratory research as it
is known to have the capacity to release numerous mediators which can cause pulmonary
effects in the airways. Meanwhile, a broad range of stimuli including capsaicin, bradykinin,
hyperosmolar saline, tobacco smoke, allergens, ozone, inflammatory mediators and cold
dry air have been shown to activate sensory nerve fibres to release neuropeptides
such as the tachykinins substance P (SP) and neurokinin A (NKA) to mediate neurogenic
inflammation. SP is synthesized in cell bodies of airway neurons of the trigeminal,
jugulare and nodose ganglia. Following their release, tachykinins are degraded by
neutral endopeptidase (NEP) and an angiotensin-converting enzyme. Tachykinins have
been proposed to play an important role in human respiratory diseases such as bronchial
asthma und chronic obstructive diseases (COPD) as they have been shown to have potent
effects on the tone of airway smooth muscle, airway secretions, bronchial circulation
and on inflammatory and immune cells by activation of the neurokinin-1 (NK-1) and
neurokinin-2 (NK-2) receptors. Recently, new tachykinins such as virokinin and hemokinin
were identified and characterised. Different aspects of the neurogenic inflammation
have been well studied in animal models of allergic airway inflammation, but only
little is known about the role of neurogenic airway inflammation in human diseases.
To address the precise role of tachykinins and airway sensory nerves in human asthma
und COPD, experiments on sensory nerve sensitisation and neuro-immune interaction
have to be carried out in future studies.
Literatur
1
Barnes P J.
Asthma as an axon reflex.
Lancet.
1986;
1 (8475)
242-245
2
Barnes P J.
Mediators of chronic obstructive pulmonary disease.
Pharmacol Rev.
2004;
56 (4)
515-548
3
Barnes P J, Chung K F, Page C P.
Inflammatory mediators of asthma: an update.
Pharmacol Rev.
1998;
50 (4)
515-596
4
Eynott P R, Groneberg D A, Caramori G. et al .
Role of nitric oxide in allergic inflammation and bronchial hyperresponsiveness.
Eur J Pharmacol.
2002;
452 (1)
123-133
5
Eynott P R, Paavolainen N, Groneberg D A. et al .
Role of nitric oxide in chronic allergen-induced airway cell proliferation and inflammation.
J Pharmacol Exp Ther.
2003;
304 (1)
22-29
6
Joos G F, Pauwels R A. et al .
Tachykinin receptor antagonists: potential in airways diseases.
Curr Opin Pharmacol.
2001;
1 (3)
235-241
7 Willis T. Opera omnia 1681; Band II. Sect. 1, Cap. XI
8
Kummer W, Fischer A, Kurkowski R. et al .
The sensory and sympathetic innervation of guinea-pig lung and trachea as studied
by retrograde neuronal tracing and double-labelling immunohistochemistry.
Neuroscience.
1992;
49 (3)
715-737
9
Fischer A, McGregor G P, Saria A. et al .
Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent
neurons by allergic airway inflammation.
J Clin Invest.
1996;
98 (10)
2284-2291
10
Dalsgaard C J, Lundberg J M.
Evidence for a spinal afferent innervation of the guinea pig lower respiratory tract
as studied by the horseradish peroxidase technique.
Neurosci Lett.
1984;
45 (2)
117-122
11
Springall D R, Cadieux A, Oliveira H. et al .
Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate
from vagal and dorsal root ganglia.
J Auton Nerv Syst.
1987;
20
155-166
12
Saria A, Martling C R, Yan Z. et al .
Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung
by bradykinin, histamine, dimethylphenyl piperazinium, and vagal nerve stimulation.
Am Rev Respir Dis.
1988;
137 (6)
1330-1335
13
Coleridge J C, Coleridge H M.
Afferent vagal C fibre innervation of the lungs and airways and its functional significance.
Rev Physiol Biochem Pharmacol.
1984;
99
1-110
14
Ricco M M, Kummer W, Biglari B. et al .
Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig
airways.
J Physiol.
1996;
496 (Pt 2)
521-530
15
Stretton D.
Non-adrenergic, non-cholinergic neural control of the airways [editorial].
Clin Exp Pharmacol Physiol.
1991;
18 (10)
675-684
16
Verastegui C, Prada Oliveira A, Fernandez-Vivero J. et al .
Calcitonin gene-related peptide immunoreactivity in adult mouse lung.
Eur J Histochem.
1997;
41 (2)
119-126
17
Fischer A, Folkerts G, Geppetti P. et al .
Mediators of asthma: nitric oxide.
Pulm Pharmacol Ther.
2002;
15 (2)
73-81
18
Springer J, Geppetti P, Fischer A. et al .
Calcitonin gene-related peptide as inflammatory mediator.
Pulm Pharmacol Ther.
2003;
16 (3)
121-130
19
Karlsson J A, Finney M J, Persson C G. et al .
Substance P antagonists and the role of tachykinins in non-cholinergic bronchoconstriction.
Life Sci.
1984;
35 (26)
2681-2691
20
Li C G, Rand M J.
Evidence that part of the NANC relaxant response of guinea-pig trachea to electrical
field stimulation is mediated by nitric oxide.
Br J Pharmacol.
1991;
102 (1)
91-94
21
Lundberg J M, Hokfelt T, Martling C R. et al .
Substance P-immunoreactive sensory nerves in the lower respiratory tract of various
mammals including man.
Cell Tissue Res.
1984;
235 (2)
251-261
22
Euler U S, Gaddum J H.
An unidentified depressor substance in certain tissue extracts.
J Physiol.
1931;
72
74-87
23
Chang M M, Leeman S E, Niall H D.
Amino-acid sequence of substance P.
Nat New Biol.
1971;
232 (29)
86-87
24
Tatemoto K, Lundberg J M, Jornvall H. et al .
Neuropeptide K: isolation, structure and biological activities of a novel brain tachykinin.
Biochem Biophys Res Commun.
1985;
128 (2)
947-953
25
Harmar A J, Hyde V, Chapman K.
Identification and cDNA sequence of delta-preprotachykinin, a fourth splicing variant
of the rat substance P precursor.
FEBS Lett.
1990;
275 (1 - 2)
22-24
26
Nawa H, Hirose T, Takashima H. et al .
Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor.
Nature.
1983;
306 (5938)
32-36
27
Kotani Y, Hirota Y, Sugiyama K. et al .
Effects of noxious stimuli and anesthetic agents on substance P content in rat central
nervous system.
Jpn J Pharmacol.
1986;
40 (1)
143-147
28
Hua X Y, Theodorsson-Norheim E, Brodin E. et al .
Multiple tachykinins (neurokinin A, neuropeptide K and substance P) in capsaicin-sensitive
sensory neurons in the guinea-pig.
Regul Pept.
1985;
13 (1)
1-19
29
Dinh Q T, Groneberg D A, Peiser C. et al .
Expression of substance P and nitric oxide synthase in vagal sensory neurons innervating
the mouse airways.
Regul Pept.
2005;
126 (3)
189-194
30
Dinh Q T, Mingomataj E, Quarcoo D. et al .
Allergic airway inflammation induces tachykinin peptides expression in vagal sensory
neurons innervating mouse airways.
Clin Exp Allergy.
2005;
35 (6)
820-825
31
Kollarik M, Dinh Q T, Fischer A. et al .
Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse.
J Physiol.
2003;
551 (3)
869-879
32
Dinh Q T, Groneberg D A, Peiser C. et al .
Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating
the mouse lung.
Respir Physiol Neurobiol.
2004;
144 (1)
15-24
33
Hunter D D, Myers A C, Undem B J.
Nerve growth factor-induced phenotypic switch in guinea pig airway sensory neurons.
Am J Respir Crit Care Med.
2000;
161 (6)
1985-1990
34
Myers A C, Kajekar R, Undem B J.
Allergic inflammation-induced neuropeptide production in rapidly adapting afferent
nerves in guinea pig airways.
Am J Physiol Lung Cell Mol Physiol.
2002;
282 (4)
L775-781
35
Undem B J, Hunter D D, Liu M. et al .
Allergen-induced sensory neuroplasticity in airways.
Int Arch Allergy Immunol.
1999;
118 (2 - 4)
150-153
36
Sikora E R, Stone S, Tomblyn S. et al .
Asphalt exposure enhances neuropeptide levels in sensory neurons projecting to the
rat nasal epithelium.
J Toxicol Environ Health.
2003;
66 (11)
1015-1027
37
Hunter D D, Satterfield B E, Huang J. et al .
Toluene diisocyanate enhances substance P in sensory neurons innervating the nasal
mucosa.
Am J Respir Crit Care Med.
2000;
161 (2 Pt 1)
543-549
38
Dinh Q T, Groneberg D A, Mingomataj E. et al .
Expression of substance P and vanilloid receptor (VR1) in trigeminal sensory neurons
projecting to the mouse nasal mucosa.
Neuropeptides.
2003;
37 (4)
245-250
39
Dinh Q T, Groneberg D A, Witt C. et al .
Expression of Tyrosine Hydroxylase and Neuropeptide Tyrosine in Mouse Sympathetic
Airway-specific Neurons under Normal Situation and Allergic Airway Inflammation.
Clin Exp Allergy.
2004;
34 (9)
1934-1941
40
Helke C J, Krause J E, Mantyh P W. et al .
Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors,
and regulatory mechanisms.
Faseb J.
1990;
4 (6)
1606-1615
41
Fischer A, Kummer W, Couraud J Y. et al .
Immunohistochemical localization of receptors for vasoactive intestinal peptide and
substance P in human trachea.
Lab Invest.
1992;
67 (3)
387-393
42
Canning B J, Fischer A, Undem B J.
Pharmacological analysis of the tachykinin receptors that mediate activation of nonadrenergic,
noncholinergic relaxant nerves that innervate guinea pig trachealis.
J Pharmacol Exp Ther.
1998;
284 (1)
370-377
43
Joos G F, Germonpre P R, Pauwels R A.
Role of tachykinins in asthma.
Allergy.
2000;
55 (4)
321-337
44
Frossard N, Advenier C.
Tachykinin receptors and the airways.
Life Sci.
1991;
49 (26)
1941-1953
45
Joachim R A, Sagach V, Quarcoo D. et al .
Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and
airway hyperresponsiveness in mice.
Psychosom Med.
2004;
66 (4)
564-571
46
Frossard N, Barnes P J.
Effect of tachykinins in small human airways.
Neuropeptides.
1991;
19 (3)
157-161
47
Crimi N, Oliveri R, Polosa R. et al .
Effect of oral terfenadine on bronchoconstrictor response to inhaled neurokinin A
and histamine in asthmatic subjects.
Eur Respir J.
1993;
6 (10)
1462-1467
48
Frossard N, Rhoden K J, Barnes P J.
Influence of epithelium on guinea pig airway responses to tachykinins: role of endopeptidase
and cyclooxygenase.
J Pharmacol Exp Ther.
1989;
248 (1)
292-298
49
Lei Y H, Barnes P J, Rogers D F.
Inhibition of neurogenic plasma exudation in guinea-pig airways by CP-96,345, a new
non-peptide NK1 receptor antagonist.
Br J Pharmacol.
1992;
105 (2)
261-262
50
Quarcoo D, Schulte-Herbruggen O, Lommatzsch M. et al .
Nerve growth factor induces increased airway inflammation via a neuropeptide-dependent
mechanism in a transgenic animal model of allergic airway inflammation.
Clin Exp Allergy.
2004;
34 (7)
1146-1151
51
Mazzone S B.
Targeting tachykinins for the treatment of obstructive airways disease.
Treat Respir Med.
2004;
3 (4)
201-216
52
Barnes P J, Shapiro S D, Pauwels R A.
Chronic obstructive pulmonary disease: molecular and cellular mechanisms.
Eur Respir J.
2003;
22 (4)
672-688
53
Shimosegawa T, Foda H D, Said S I.
[Met]enkephalin-Arg6-Gly7Leu8-immunoreactive nerves in guinea-pig and rat lungs: distribution,
origin, and co-existence with vasoactive intestinal polypeptide immunoreactivity.
Neuroscience.
1990;
36 (3)
737-750
Q. Thai Dinh, MD
Medizinische Klinik mit Schwerpunkt Psychosomatik und Klinische Forschergruppe Allergologie
· Charité - Universitätsmedizin Berlin, Germany
Augustenburger Platz 1
13353 Berlin
Germany
Email: q-thai.dinh@charite.de