References
<A NAME="RY06105ST-1">1</A>
Tapiolas DM.
Roman M.
Fenical W.
Stout TJ.
Clardy J.
J. Am. Chem. Soc.
1991,
113:
4682
<A NAME="RY06105ST-2A">2a</A>
Connolly JD.
Okrie DA.
De Wit LD.
Taylor DAH.
J. Chem. Soc., Chem. Commun.
1976,
909
<A NAME="RY06105ST-2B">2b</A>
Taylor DAH.
J. Chem. Res., Synop.
1982,
55
<A NAME="RY06105ST-2C">2c</A>
Ackland MJ.
Hanson JR.
Hitchcock PB.
Ratcliffe AH.
J. Chem. Soc., Perkin Trans. 1
1985,
843
<A NAME="RY06105ST-2D">2d</A>
Fang X.
Anderson JE.
Qui X.
Kozlowski JF.
Chang C.
McLaughlin JL.
Tetrahedron
1993,
49:
1563
<A NAME="RY06105ST-2E">2e</A>
Shiina I.
Fukuda Y.
Ishii T.
Fujisawa H.
Mukaiyama T.
Chem. Lett.
1998,
831
<A NAME="RY06105ST-2F">2f</A> A revised structure has been proposed:
Mukai C.
Yamashita H.
Hirai S.
Hanaoka M.
McLaughlin JL.
Chem. Pharm. Bull.
1999,
47:
131
<A NAME="RY06105ST-2G">2g</A>
Shiina I.
Fujisawa H.
Ishii T.
Fukuda Y.
Heterocycles
2000,
52:
1105
<A NAME="RY06105ST-3">3</A>
Buszek KR.
Sato N.
Jeong Y.
J. Am. Chem. Soc.
1994,
116:
5511
<A NAME="RY06105ST-4">4</A> Total synthesis of (+)-ent-octalactin A:
McWilliams JC.
Clardy J.
J. Am. Chem. Soc.
1994,
116:
8378
<A NAME="RY06105ST-5">5</A>
Perchellet J.-P.
Perchellet EM.
Newell SW.
Freeman JA.
Ladesich JB.
Jeong Y.
Sato N.
Buszek KR.
Anticancer Res.
1998,
18:
97
Formal synthesis:
<A NAME="RY06105ST-6A">6a</A>
Buszek KR.
Jeong Y.
Tetrahedron Lett.
1995,
36:
7189
<A NAME="RY06105ST-6B">6b</A>
Andrus MB.
Argade AB.
Tetrahedron Lett.
1996,
37:
5049
<A NAME="RY06105ST-6C">6c</A>
Kodama M.
Matsushita M.
Terada Y.
Takeuchi A.
Yoshio S.
Fukuyama Y.
Chem. Lett.
1997,
117
<A NAME="RY06105ST-6D">6d</A>
Inoue S.
Iwabuchi Y.
Irie H.
Hatakeyama S.
Synlett
1998,
735
<A NAME="RY06105ST-6E">6e</A>
Garcia J.
Bach J.
Tetrahedron Lett.
1998,
39:
6761
Partial syntheses:
<A NAME="RY06105ST-6F">6f</A>
Bach J.
Vilarrasa J.
Tetrahedron Lett.
1995,
36:
3425
<A NAME="RY06105ST-6G">6g</A>
Hulme AN.
Howells GE.
Tetrahedron Lett.
1997,
38:
8245
<A NAME="RY06105ST-6H">6h</A>
Shimoma F.
Kusaka H.
Wada K.
Azami H.
Yasunami M.
Suzuki T.
Hagiwara H.
Ando M.
J. Org. Chem.
1998,
63:
920
<A NAME="RY06105ST-6I">6i</A>
Harrison JR.
Holmes AB.
Collins I.
Synlett
1999,
972
<A NAME="RY06105ST-6J">6j</A>
Anderson EA.
Holmes AB.
Collins I.
Tetrahedron Lett.
2000,
41:
117
<A NAME="RY06105ST-6K">6k</A>
Bluet G.
Campagne JM.
Synlett
2000,
221
<A NAME="RY06105ST-7">7</A>
Buszek KR.
Sato N.
Jeong Y.
Tetrahedron Lett.
2002,
43:
181
<A NAME="RY06105ST-8">8</A>
O’Sullivan PT.
Burh W.
Fuhry MAM.
Harrison JR.
Davies JE.
Feeder N.
Marshall DR.
Burton JW.
Holmes AB.
J. Am. Chem. Soc.
2004,
126:
2194
<A NAME="RY06105ST-9A">9a</A>
Shiina I.
Oshiumi H.
Hashizume M.
Yamai Y.-S.
Ibuka R.
Tetrahedron Lett.
2004,
45:
543
<A NAME="RY06105ST-9B">9b</A>
Shiina I.
Ikuba R.
Kubota M.
Tetrahedron Lett.
2002,
43:
7535
<A NAME="RY06105ST-10">10</A>
The yield was calculated for the two steps from (R,R)-I.
<A NAME="RY06105ST-11">11</A>
Spectroscopic data of compound 3: [α]D
25 +25.2 (c 1.08, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 5.72 (ddd, J = 7.9, 10.9, 16.5 Hz, 1 H), 5.02 (m, 2 H), 3.75 (m, 1 H), 3.62 (s, 3 H), 2.69 (s,
1 H), 2.39 (m, 2 H), 2.22 (m, 1 H), 1.00 (d, J = 6.7 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 173.2 (s), 139.4 (d), 115.8 (t), 71.0 (d), 51.5 (q), 43.2 (d), 38.6 (t), 15.6
(q). IR (neat): ν = 3450, 2940, 1740 cm-1. MS (EI, 70 eV): m/z (%) = 158 (absent) [M], 127 (10), 103 (100), 83 (14), 71 (80), 61 (35), 56 (60).
<A NAME="RY06105ST-12">12</A>
The diastereoselectivity of the reaction was determined by 1H NMR spectroscopy and the enantioselectivity by GC/MS spectrometry (HP 6890 Series
Injector GC system coupled with HP 5973 Mass Selective Detector) of the corresponding
Mosher esters.
<A NAME="RY06105ST-13">13</A>
Spectroscopic data of compound 4: [α]D
25 +18.9 (c 0.45, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 9.46 (d, J = 7.9 Hz, 1 H), 6.86 (dd, J = 7.9, 15.8 Hz, 1 H), 6.08 (ddd, J = 1.1, 7.9, 15.8 Hz, 1 H), 3.99 (m, 1 H), 3.64 (s, 3 H), 3.30 (d, J = 3.5 Hz, 1 H), 2.50 (m, 1 H), 2.41 (m, 2 H), 1.11 (d, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 194.0 (d), 173.0 (s), 159.0 (d), 133.3 (d), 70.7 (d), 51.9 (q), 42.2 (d), 39.0
(t), 15.7 (q). IR (neat): ν = 3500, 2950, 1750 cm-1. MS (EI, 70 eV): m/z (%) = 186 (absent) [M], 155 (2), 109 (5), 103 (25), 95 (16), 84 (100), 42 (71), 61
(15), 55 (38).
<A NAME="RY06105ST-14">14</A>
The limiting step is the saponification.
<A NAME="RY06105ST-15A">15a</A>
Shiina I.
Ikuba R.
Kubota M.
Chem. Lett.
2002,
286
<A NAME="RY06105ST-15B">15b</A>
Shiina I.
Kubota M.
Oshiumi H.
Hashizume M.
J. Org. Chem.
2004,
65:
1822
<A NAME="RY06105ST-16">16</A>
Spectroscopic data of compound 10: [α]D
25 -54.6 (c 1.59, CHCl3).17 1H NMR (300 MHz, CDCl3): δ = 9.65 (s, 1 H), 4.60 (ddd, J = 3.6, 7.1, 15.0 Hz, 1 H), 3.92 (d, J = 6.8 Hz, 1 H), 2.70-2.68 (m, 3 H), 1.92 (m, 1 H), 1.75-1.50 (m, 4 H), 1.08 (d, J = 7.1 Hz, 3 H), 0.99 (d, J = 7.1 Hz, 3 H), 0.85 (s, 9 H), 0.15 (s, 3 H), 0.00 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 202.4 (d), 170.8 (s), 76.8 (d), 72.7 (d), 50.6 (d), 39.7 (t), 38.5 (d), 31.4
(t), 25.8 (3 q), 25.7 (q), 23.0 (t), 18.0 (s), 10.4 (q), -4.2 (q), -5.1 (q). IR (neat):
ν = 2955, 2928, 2855, 1721, 1461, 1253, 1180, 1086, 1036 cm-1. MS (EI, 70 eV): m/z (%) = 271 (12), 185 (18), 171 (23), 157 (13), 145 (46), 119 (13), 115 (26), 109 (29),
101 (61), 93 (14), 75 (100), 73 (53), 59 (19), 55 (23).
<A NAME="RY06105ST-17">17</A>
In order to avoid the epimerization of the stereogenic center in the α-position of
the aldehyde, and due to the instability of 10, τηε [α]D was measured on the product obtained after extraction.