Semin Plast Surg 2005; 19(3): 207-215
DOI: 10.1055/s-2005-919716
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Engineering Adipose Tissue for Regenerative and Reparative Therapies

Charles W. Patrick1  Jr 
  • 1Laboratory of Reparative Biology and Bioengineering, Department of Plastic Surgery, Unit 602, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
Further Information

Publication History

Publication Date:
11 October 2005 (online)

ABSTRACT

The correction or augmentation of soft tissue defects caused by trauma, tumor resection, congenital abnormalities, and aging presents a multitude of challenges in reconstructive surgery. Soft tissue defects run the gamut in terms of volume, from restoring the fullness of the face by removing wrinkles to restoring the breast mound after mastectomy. The limitations of current restorative and reparative techniques have served as drivers for the development of adipose tissue as an application area for tissue engineering. Tissue engineering is a multidisciplinary and maturing field that combines bioengineering, the clinical sciences, and the life sciences to repair or regrow tissues. This article discusses the inadequacies of current methods of correcting soft tissue defects and the innovative adipose tissue engineering strategies under pursuit to abrogate these limitations and improve patients’ outcomes and quality of life, and speculates rationally on the future. It does not discuss the applications and technologies involved with adipose-derived stem cells unless directly applied toward adipogenesis.

REFERENCES

  • 1 Patrick Jr C W. Breast tissue engineering.  Annu Rev Biomed Eng. 2004;  6 109-130
  • 2 Patrick Jr C W. Tissue engineering strategies for soft tissue repair.  Anat Rec. 2001;  263 361-366
  • 3 Patrick Jr C W. Tissue engineering of fat.  Surg Oncol. 2000;  19 302-311
  • 4 Patel P N, Robb G L, Patrick Jr C W. Soft tissue restoration using tissue engineering.  Semin Plast Surg. 2003;  17 99-106
  • 5 Elson M L. Soft tissue augmentation: a review.  Dermatol Surg. 1995;  21 491-500
  • 6 Elson M L. Dermal filler materials.  Dermatol Clin. 1993;  11 361-367
  • 7 Clark D P, Hawke C W, Swanson N. Dermal implants: safety of products injected for soft tissue augmentation.  J Am Acad Dermatol. 1989;  21 992-998
  • 8 Stegman S J, Chu S, Bensch K, Armstrong R. A light and electron microscopic evaluation of Zyderm collagen and Zyplast implants in aging human facial skin. A pilot study.  Arch Dermatol. 1987;  123 1644-1649
  • 9 Billings Jr E, May Jr J W. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery.  Plast Reconstr Surg. 1989;  83 368-381
  • 10 Ersek R A. Transplantation of purified autologous fat: a 3-year follow-up disappointing.  Plast Reconstr Surg. 1991;  87 219-227
  • 11 Frye C, Wu X, Patrick C W. Microvascular endothelial cells sustain preadipocyte viability under hypoxic conditions.  In Vitro Cell Dev Biol Anim. 2005;  41 160-164
  • 12 Fukumura D, Ushiyama A, Duda D G et al.. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis.  Circ Res. 2003;  93 e88-e97
  • 13 Coleman S R. Facial recontouring with lipostructure.  Clin Plast Surg. 1997;  24 347-367
  • 14 Coleman S R. Long-term survival of fat transplants: controlled demonstrations.  Aesthetic Plast Surg. 1995;  19 421-425
  • 15 Robb G L. Reconstructive surgery. In: Hunt KK, Robb GL, Strom EA, Ueno NT Breast Cancer. New York; Springer 2000: 223-253
  • 16 American Society of Plastic Surgeons .2004 National Clearinghouse of Plastic Surgery Statistics. American Society of Plastic Surgeons 2005 http://Available at: www.plasticsurgery.com
  • 17 Patel P N, Patrick Jr C W. Materials employed for breast augmentation and reconstruction. In: Ma PX, Elisseeff J Scaffolding in Tissue Engineering. New York; Marcel Dekker 2005: 425-438
  • 18 Brey E M, Patrick Jr C W. Tissue engineering applied to reconstructive surgery.  IEEE Eng Med Biol Mag. 2000;  19 122-125
  • 19 Cho S W, Kim S S, Rhie J W, Cho H M, Cha Y C, Kim B S. Engineering of volume-stable adipose tissues.  Biomaterials. 2005;  26 3577-3585
  • 20 Fischbach C, Spruss T, Weiser B et al.. Generation of mature fat pads in vitro and in vivo utilizing 3-D long-term culture of 3T3-L1 preadipocytes.  Exp Cell Res. 2004;  300 54-64
  • 21 Patrick Jr C W, Chauvin P B, Reece G P. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering.  Tissue Eng. 1999;  5 139-151
  • 22 Patrick Jr C W, Zheng B, Johnston C, Reece G P. Long-term implantation of preadipocyte seeded PLGA scaffolds.  Tissue Eng. 2002;  8 283-293
  • 23 Kral J G, Crandall D L. Development of a human adipocyte synthetic polymer scaffold.  Plast Reconstr Surg. 1999;  104 1732-1738
  • 24 Kang X, Xie Y, Kniss D A. Adipose tissue model using three-dimensional cultivation of preadipocytes seeded onto fibrous polymer scaffolds.  Tissue Eng. 2005;  11 458-468
  • 25 Hong L, Peptan I, Clark P, Mao J J. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge.  Ann Biomed Eng. 2005;  33 511-517
  • 26 von Heimburg D, Zachariah S, Heschel I et al.. Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo.  Biomaterials. 2001;  22 429-438
  • 27 von Heimburg D, Zachariah S, Low A, Pallua N. Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells.  Plast Reconstr Surg. 2001;  108 411-420
  • 28 Roweton S, Freeman L, Patrick C W, Zimmerman M. Preadipocyte-seeded absorbable matrices. Presented at the Johnson and Johnson Excellence in Science Symposium 2000 New Jersey;
  • 29 Alhadlaq A, Tang M, Mao J J. Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction.  Tissue Eng. 2005;  11 556-566
  • 30 Patel P N, Smith C K, Patrick Jr C W. Rheological and recovery properties of poly (ethylene glycol) diacrylate hydrogels and human adipose tissue.  J Biomed Mater Res A. 2005;  73 313-319
  • 31 Patel P N, Gobin A S, West J L, Patrick Jr C W. Poly (ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation.  Tissue Eng. 2005;  , In press
  • 32 Patrick Jr C W, Wu X. Integrin-mediated preadipocyte adhesion and migration on laminin.  Ann Biomed Eng. 2003;  31 505-515
  • 33 Halberstadt C, Austin C, Rowley J et al.. A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep.  Tissue Eng. 2002;  8 309-319
  • 34 Halberstadt C R, Mooney D J, Burg K JL et al.. The design and implantation of an alginate material for soft tissue engineering. Presented at the Sixth World Biomaterials Congress 2000 Kamuela, Hawaii;
  • 35 Fischbach C, Seuffert J, Staiger H et al.. Three-dimensional in vitro model of adipogenesis: comparison of culture conditions.  Tissue Eng. 2004;  10 215-229
  • 36 Kawaguchi N, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor.  Proc Natl Acad Sci USA. 1998;  95 1062-1066
  • 37 Kimura Y, Ozeki M, Inamoto T, Tabata Y. Time course of de novo adipogenesis in Matrigel by gelating microspheres incorporating basic fibroblast growth factor.  Tissue Eng. 2002;  8 603-613
  • 38 Beahm E, Walton R, Patrick Jr C W. Progress in adipose tissue construct development.  Clin Plast Surg. 2003;  30 547-558
  • 39 Walton R L, Beahm E K, Wu L. De novo adipose formation in a vascularized engineered construct.  Microsurgery. 2004;  24 378-384
  • 40 Yuksel E, Weinfeld A B, Cleek R et al.. De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/PEG microspheres in an in vivo rat model: a novel concept and capability.  Plast Reconstr Surg. 2000;  105 1721-1729

Charles W Patrick Jr.Ph.D. 

Director of Research, Laboratory of Reparative Biology and Bioengineering, Department of Plastic Surgery

The University of Texas M.D. Anderson Cancer Center

P.O. Box 301402, Houston, TX 77231

    >