J Reconstr Microsurg 2005; 21(8): 565-572
DOI: 10.1055/s-2005-922437
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Bridging Small-Gap Peripheral Nerve Defects Using Biodegradable Chitin Conduits with Cultured Schwann and Bone Marrow Stromal Cells in Rats

Peixun Zhang1 , Xiangjun He1 , Fuqiang Zhao1 , Dianying Zhang1 , Zhongguo Fu1 , Baoguo Jiang1
  • 1Department of Orthopaedics and Trauma, Peking University People's Hospital, Beijing, China
Further Information

Publication History

Accepted: June 22, 2005

Publication Date:
17 November 2005 (online)

ABSTRACT

Nerve regeneration requires not only an autologous, allogenous, or biodegradable scaffolding, but additional interactions with regeneration-promoting Schwann cells. Considering the pluripotency of bone marrow stromal cells into different lineages, the authors compared biodegradable conduits with the application of cultured Schwann cells and bone marrow stromal cells in a rat sciatic injury model. Simple conduit bridging served as controls. Electrophysiologic evaluation and histologic morphometrical analysis were performed after 6 weeks; both groups with cultured cells showed a statistically significantly higher number of axons, more well-shaped remyelinated axons, and an advance in clinical functional recovery (SFI) than the simple conduit-bridging group. Confocal microscopy found that bone marrow stromal cells adopted the Schwann-cell phenotype, expressing S100 protein. Considering the ease of aspiration and greater resource of bone marrow stromal cells, the implantation of a biodegradable conduit with cultured bone marrow stromal cells was capable of presenting an alternative to conduits with Schwann cells for bridging nerve defects.

REFERENCES

  • 1 Terzis J K, Sun D D, Thanos P K. History and basic science review: past, present and future of nerve repair.  J Reconstr Microsurg. 1997;  13 215-225
  • 2 Strauch B, Ferder M, Lovelle-Allen S, Moore K, Kim D J, Llena J. Determining the maximal length of a vein conduit used as an interposition graft for nerve regeneration.  J Reconstr Microsurg. 1996;  12 521-527
  • 3 Bunge R P. Expanding roles for the Schwann cell: ensheathment, myelinisation, tropism, and regeneration.  Curr Opin Neurobiol. 1993;  3 805-809
  • 4 Fansa H, Keilho G, Wolf G, Schneider W. Tissue engineering of peripheral nerves: a comparison of venous and acellular muscle grafts with cultured Schwann cells.  Plast Reconstr Surg. 2001;  107 485-494
  • 5 Zhang F, Blain B, Beck J et al.. Autogenous venous graft with one-stage prepared Schwann cells as a conduit for repair of long segmental nerve defects.  J Reconstr Microsurg. 2002;  18 295-300
  • 6 Jiang Y H, Jahagirdar B N, Reinhardt R L et al.. Pluripotency of mesenchymal stem cells derived from adult marrow.  Nature. 2002;  418 41-49
  • 7 Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells.  Eur Neuroscience. 2001;  14 1771-1776
  • 8 Cuevas P, Carceller F, Dujovny M et al.. Peripheral nerve regeneration by bone marrow stromal cells.  Neurological Research. 2002;  24 634-638
  • 9 Lundborg G, Dahlin L B, Danielsen N, Nachemson A K. Tissue specificity in nerve regeneration.  Scand J Plast Reconstr Surg. 1986;  20 279-283
  • 10 Evans G R, Brandt K, Widmer M S et al.. In vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration.  Biomaterials. 1999;  20 1109-1115
  • 11 Evans G R, Brandt K, Katz S et al.. Bioactive poly (L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration.  Biomaterials. 2002;  23 841-848
  • 12 Ansselin D, Fink P, Davey D F. Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells.  Neuropathol Appl Neurobiol. 1997;  23 387-398
  • 13 Fansa H, Dodic T, Wolf G, Schineider W, Keilhoff G. Tissue engineering of peripheral nerves: epineurial grafts with application of cultured Schwann cells.  Microsurgery. 2003;  23 72-77
  • 14 Boutonnat J, Barbier M, Muirhead K et al.. Response of chemosensitive and chemoresistant leukemic cell lines to drug therapy: simultaneous assessment of proliferation, apoptosis, and necrosis.  Cytometry. 2000;  15;42 50-60
  • 15 Askenasy N, Daniel L, Farkasa C. Antigen barriers or available space do not restrict in situ adhesion of hemopoietic cells to bone marrow stroma.  Stem Cells. 2002;  20 80-85
  • 16 Terada N, Hamazaki T, Oka M et al.. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion.  Nature. 2002;  416 542-545
  • 17 Wang X, Willenbring H, Akkari Y et al.. Cell fusion is the principal source of bone marrow-derived hepatocytes.  Nature. 2003;  422 897-900
  • 18 Bryan D J, Tang J B, Holway A H et al.. Enhanced periperal nerve regeneration elicited by cell-mediated events delivered via a bioresorbable PLGA guide.  J Reconstr Microsurg. 2003;  19 125-134
  • 19 Hori J, Ng T F, Shatos M, Klassen H, Streilein J W, Young M J. Neural progenitor cells lack immunogenicity and resist destruction as allografts.  Stem Cells. 2003;  21 405-416

Baoguo JiangM.D. Ph.D. 

Department of Orthopaedics and Trauma, Peking University People's Hospital

Beijing China 100044

    >