Abstract
The oxidation of alcohols to carbonyl compounds such as aldehydes and ketones was
studied using potassium hexacyanoferrate(III) mediated by nitroxyl radical polystyrene
resins as catalyst under organic-aqueous two-phase conditions. Primary alcohols are
readily oxidized to the corresponding aldehydes in excellent yield with no overoxidation
to carboxylic acids. Secondary alcohols are converted to the corresponding ketones
with a much lower efficiency. Oxidative cyclization of 1,4- and 1,5-diols to γ- and
δ-lactones, respectively, proceeded nicely.
Key words
nitroxyl radical resin - potassium hexacyanoferrate(III) - alcohol - oxidation - two-phase
conditions
References and Notes
<A NAME="RU28805ST-1">1 </A>
Rozantsen EG.
Sholle VD.
Synthesis
1971,
401
<A NAME="RU28805ST-2">2 </A>
de Nooy AEJ.
Besemer AC.
van Bekkum H.
Synthesis
1996,
1153
<A NAME="RU28805ST-3">3 </A>
Sheldon RA.
Arends ICWE.
Adv. Synth. Catal.
2004,
346:
1051
<A NAME="RU28805ST-4">4 </A>
But TYS.
Tashino Y.
Togo H.
Toy PH.
Org. Biomol. Chem.
2005,
3:
970
<A NAME="RU28805ST-5">5 </A>
Ley SV.
Baxendal IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
<A NAME="RU28805ST-6">6 </A>
Weik S.
Nicholson G.
Jung G.
Rademann J.
Angew. Chem. Int. Ed.
2004,
40:
1436
<A NAME="RU28805ST-7">7 </A>
Bolm C.
Magnus AS.
Hildebrand JP.
Org. Lett.
2000,
2:
1173
<A NAME="RU28805ST-8">8 </A>
Pozzi G.
Cavazzini M.
Quici S.
Benaglia M.
Dell’Anna G.
Org. Lett.
2004,
6:
441
<A NAME="RU28805ST-9">9 </A>
Ferreira P.
Phillips E.
Rippon D.
Tsang SC.
Hayes W.
J. Org. Chem.
2004,
69:
6851
<A NAME="RU28805ST-10">10 </A>
Dijksman A.
Arends IWCE.
Sheldon RA.
Chem. Commun.
2000,
271
<A NAME="RU28805ST-11">11 </A>
Wu X.-E.
Ma L.
Ding M.-X.
Gao L.-X.
Synlett
2005,
607
NaOCl:
<A NAME="RU28805ST-12A">12a </A>
Anelli PL.
Biffi C.
Montanari F.
Quici S.
J. Org. Chem.
1987,
52:
2559
<A NAME="RU28805ST-12B">12b </A>
Anelli PL.
Biffi C.
Montanari F.
Quici S.
J. Org. Chem.
1989,
54:
2970
<A NAME="RU28805ST-12C">12c </A>
Anelli PL.
Montanari F.
Quici S.
Org. Synth.
1990,
69:
212
<A NAME="RU28805ST-12D">12d </A>
Siedlecka R.
Skarzewski J.
Mlochowski J.
Tetrahedron Lett.
1990,
31:
2177
<A NAME="RU28805ST-12E">12e </A>
Tong G.
Perich JW.
Johns RB.
Tetrahedron Lett.
1990,
31:
3759
<A NAME="RU28805ST-12F">12f </A>
Straub ST.
J. Chem. Educ.
1991,
68:
1048
<A NAME="RU28805ST-12G">12g </A>
Davis NJ.
Flitsch SL.
Tetrahedron Lett.
1993,
34:
1181
<A NAME="RU28805ST-12H">12h </A>
Davis NJ.
Flitsch SL.
J. Chem. Soc., Perkin Trans. 1
1994,
359
<A NAME="RU28805ST-12I">12i </A>
Bolm C.
Fey T.
Chem. Commun.
1999,
1795
<A NAME="RU28805ST-12J">12j </A>
Zao M.
Li J.
Mano E.
Song Z.
Tschaen DM.
Grabowski EJJ.
Reider PJ.
J. Org. Chem.
1999,
64:
2564
NaBr:
<A NAME="RU28805ST-13A">13a </A>
Leanna MR.
Sowin TJ.
Morton HE.
Tetrahedron Lett.
1992,
33:
5029
<A NAME="RU28805ST-13B">13b </A>
Inokuchi T.
Matsumoto S.
Nishiyama T.
Torii S.
Synlett
1990,
57
<A NAME="RU28805ST-13C">13c </A>
Inokuchi T.
Matsumoto S.
Torii S.
J. Org. Chem.
1991,
56:
2416
<A NAME="RU28805ST-13D">13d </A>
Ogibin YuN.
Khusid AKh.
Nikishin GI.
Bull. Acad. Sci., USSR, Div. Chem. Sci.
1992,
735
<A NAME="RU28805ST-13E">13e </A>
Kuroboshi M.
Yoshihara H.
Cortona MN.
Kawakami Y.
Gao Z.
Tanaka H.
Tetrahedron Lett.
2000,
41:
8131
NaBrO2 :
<A NAME="RU28805ST-14A">14a </A>
Inokuchi T.
Matsumoto S.
Nishiyama T.
Torii S.
J. Org. Chem.
1990,
55:
462
<A NAME="RU28805ST-14B">14b </A>
Inokuchi T.
Liu P.
Torii S.
Chem. Lett.
1994,
1411
<A NAME="RU28805ST-14C">14c </A>
Saito S.
Hara T.
Naka K.
Hayashi T.
Moriwake T.
Synlett
1992,
241
<A NAME="RU28805ST-14D">14d </A>
Saito S.
Ishikawa T.
Moriwake T.
Synlett
1993,
139
<A NAME="RU28805ST-15">15 </A> Bu4 NBr3 :
Inokuchi T.
Matsumoto S.
Fukushima M.
Torii S.
Bull. Chem. Soc. Jpn.
1991,
64:
796
CuCl2 :
<A NAME="RU28805ST-16A">16a </A>
Miyazawa T.
Endo T.
J. Mol. Catal.
1985,
31:
217
<A NAME="RU28805ST-16B">16b </A>
Miyazawa T.
Endo T.
J. Polym. Sci., Part A: Polym. Chem.
1985,
23:
2487
K3 Fe(CN)6 :
<A NAME="RU28805ST-17A">17a </A>
Miyazawa T.
Endo T.
J. Mol. Catal.
1985,
32:
357
<A NAME="RU28805ST-17B">17b </A>
Miyazawa T.
Endo T.
J. Mol. Catal.
1988,
49:
L31
<A NAME="RU28805ST-17C">17c </A>
Kashiwagi Y.
Chiba S.
Anzai J.
New J. Chem.
2003,
27:
1545
<A NAME="RU28805ST-18">18 </A>
During the oxidation reaction, some of the polymer beads were removed from the reaction
solution and extracted. The product was identified by comparing its retention time
on HLPC or/and GC with those of an authentic sample. HPLC analysis was carried out
using Daicel CHIRALCEL® OD column (46 mm × 250 mm). The column temperature was kept constant at 40 °C. The
analytes were eluted by i- PrOH-n -hexane (2:33) at 0.7 mL min-1 flow rate, and detected by UV adsorption at 254 nm. The GC analysis was carried out
using CP-Cyclodextrin-B-2,3,6-M-19 capillary column (0.25 mm × 25 m). The column temperature
increased at 3 °C min-1 from 80 °C to 150 °C. The injection and detector temperatures were kept constant
at 200 °C and 240 °C, respectively.
<A NAME="RU28805ST-19A">19a </A>
Kishioka S.
Ohsaka T.
Tokuda K.
Chem. Lett.
1998,
343
<A NAME="RU28805ST-19B">19b </A>
Kishioka S.
Ohki S.
Ohsaka T.
Tokuda K.
J. Electroanal. Chem.
1998,
452:
176