Abstract
The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.
Key words
Aquaporins - salinity - nutrient uptake - water uptake - calcium.
References
-
1
Abbasi F. M., Komatsu S..
A proteomic approach to analyze salt-responsive proteins in rice leaf sheath.
Proteomics.
(2004);
4
2072-2081
-
2
Abebe T., Guenzi A. C., Martín B., Cushman J. C..
Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity.
Plant Physiology.
(2003);
131
1748-1755
-
3
Aharon R., Shahak Y., Wininger S., Bendov R., Kapulnik Y., Galili G..
Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress.
Plant Cell.
(2003);
15
439-447
-
4
Apse M. P., Blumwald E..
Engineering salt tolerance in plants.
Current Opinion in Biotechnology.
(2002);
13
146-150
-
5
Apse M. P., Aharon G. S., Snedden W. A., Blumwald E..
Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis.
Science.
(1999);
285
1256-1258
-
6
Ashraf M..
Salt tolerance of cotton: some new advances.
Critical Reviews in Plant Sciences.
(2002);
21
1-30
-
7
Ashraf M., Harris P. J. C..
Potential biochemical indicators of salinity tolerance in plants.
Plant Science.
(2004);
166
3-16
-
8
Azad A. K., Sawa Y., Ishikawa T., Shibata H..
Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals.
Bioscience, Biotechnology and Biochemistry.
(2004);
68
1170-1174
-
9
Azaizeh H., Steudle E..
Effects of salinity on water transport of excised maize (Zea mays L.) roots.
Journal of Plant Physiology.
(1991);
97
1136-1145
-
10
Baba T., Fujiyama H..
Differences in short-term responses of rice and tomato to sodium salinization and supplemental potassium and calcium.
Soil Science and Plant Nutrition.
(2003);
49
669-675
-
11
Badawi G. H., Kawano N., Yamauchi Y., Shimada E., Sasaki R., Kubo A., Tanaka K..
Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit.
Physiologia Plantarum.
(2004);
121
231-238
-
12
Baiges I., Schäffner A. R., Affenzeller M. J., Mas A..
Plant aquaporins.
Physiologia Plantarum.
(2002);
115
175-182
-
13
Bayuelo-Jiménez J. S., Debouck D. G., Lynch J. P..
Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions.
Field Crops Research.
(2003);
80
207-222
-
14 Binzel M. L., Ratajczak R.. Function of membrane transport systems under salinity: tonoplast. Läuchli, A. and Lüttge, U., eds. Salinity: Environment -Plants - Molecules. Dordrecht, The Netherlands; Kluwer Academic Publishers (2002): 423-449
-
15
Blum A., Munns R., Passioura J. B., Turner N. C..
Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations?.
Plant Physiology.
(1996);
110
1051-1053
-
16
Blumwald E., Aharon G. S., Apse M. P..
Sodium transport in plant cells.
Biochemica et Biophysica Acta - Biomembranes.
(2000);
1465
140-151
-
17
Botella M. A., del Amor F., Amoros A., Serrano M., Martinez V., Cerda A..
Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity.
Physiologia Plantarum.
(2000);
109
428-434
-
18
Boursiac Y., Chen S., Luu D. T., Sorieul M., van den Dries N., Maurel C..
Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression.
Plant Physiology.
(2005);
139
790-805
-
19
Buschmann P. H., Vaidyanathan R., Gassmann W., Schroeder J. I..
Enhancement of Na(+) uptake currents, time-dependent inward-rectifying K(+) channel currents, and K(+) channel transcripts by K(+) starvation in wheat root cells.
Plant Physiology.
(2000);
122
1387-1397
-
20
Cabañero F. J., Martínez V., Carvajal M..
Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake?.
Plant Science.
(2004);
166
443-450
-
21
Cabañero F. J., Martinez-Ballesta M. C., Teruel J. A., Carvajal M..
New evidences about the relationship between aquaporin and calcium in salinity-stressed pepper plants.
Plant and Cell Physiology.
(2006);
47
224-233
-
24
Carvajal M., Cerda A., Martínez V..
Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity?.
New Phytologist.
(2000 a);
145
439-447
-
22
Carvajal M., Cooke D. T., Clarkson D. T..
Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function.
Planta.
(1996);
199
372-381
-
25
Carvajal M., Martínez V., Alcaraz C. F..
Physiological function of water channels as affected by salinity in roots of paprika pepper.
Physiologia Plantarum.
(1999);
105
95-101
-
23
Carvajal M., Martínez V., Cerdá A..
Influence of magnesium and salinity on tomato plants growth in hydroponic culture.
Journal of Plant Nutrition.
(2000 b);
22
177-190
-
26
Chartzoulakis K., Klapaki G..
Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages.
Scientia Horticulturae.
(2000);
86
247-260
-
27
Chaumont F., Barrieu F., Wojcik E., Chrispeels M. J., Jung R..
Aquaporins constitute a large and highly divergent protein family in maize.
Plant Physiology.
(2001);
125
1206-1215
-
28
Cheeseman J. M..
Mechanisms of salinity tolerance in plants.
Plant Physiology.
(1988);
87
547-550
-
29
Chen T. H. H., Murata N..
Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes.
Current Opinion in Plant Biology.
(2002);
5
250-257
-
30
Chrispeels M. J., Maurel C..
Aquaporins: the molecular basis of facilitated water movement through living plants cell?.
Plant Physiology.
(1994);
105
9-13
-
31
Clarkson D. T., Carvajal M., Henzler T., Waterhouse R. N., Smyth A. J., Cooke D. T., Steudle E..
Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress.
Journal of Experimental Botany.
(2000);
51
61-70
-
32 Cramer G. R.. Sodium-calcium interactions under salinity stress. Läuchli, A. and Lüttge, U., eds. Salinity: Environment - Plants - Molecules. Dordrecht, The Netherlands; Kluwer Academic Publishers (2002): 205-227
-
33
Cramer G. R., Jones R. L..
Osmotic stress and abscisic acid reduce cytosolic calcium activities in roots of Arabidopsis thaliana.
Plant, Cell and Environment.
(1996);
19
1291-1298
-
34
Cramer G. R., Lynch J., Läuchli A., Epstein E..
Influx of Na+, K+, and Ca2+ into roots of salt stressed cotton seedlings: effects of supplemental Ca2+.
Plant Physiology.
(1987);
83
510-516
-
35
Daniels M. J., Mirkov T. E., Chrispeels M. J..
The plasma membrane of Arabidopsis thaliana contains a mercury- insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP.
Plant Physiology.
(1994);
106
1325-1333
-
36
Davenport R. J., Tester M..
A weakly voltage-dependent, non-selective cation channel mediates toxic sodium influx in wheat.
Plant Physiology.
(2000);
122
823-834
-
37
Dean R. M., Rivers R. L., Zeidel M. L., Roberts D. M..
Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties.
Biochemistry.
(1999);
38
347-353
-
38
Demidchik V., Tester M..
Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots.
Plant Physiology.
(2002);
128
379-387
-
39
Demidchik V., Davenport R. J., Tester M..
Nonselective cation channels in plants.
Annual Review of Plant Biology.
(2002);
53
67-107
-
172
Ehret D. L., Redmann R. E., Harvey B. L., Cipywnyk A..
Salinity-induced calcium deficiencies in wheat and barley.
Plant and Soil.
(1990);
128
143-151
-
40
El Hendawy S. E., Hu Y. C., Schmidhalter U..
Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances.
Australian Journal of Agricultural Research.
(2005);
56
123-134
-
41
Evlagon D., Ravina I., Neumann P. M..
Interactive effects of salinity and calcium on hydraulic conductivity, osmotic adjustment and growth in primary roots of maize seedlings.
Israel Journal of Botany.
(1990);
39
239-247
-
42
Fernandez-Garcia N., Martinez V., Carvajal M..
Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants.
Journal of Plant Nutrition and Soil Science.
(2004 a);
167
616-622
-
43
Fernandez-Garcia N., Martinez V., Cerda A., Carvajal M..
Fruit quality of grafted tomato plants grown under saline conditions.
Journal of Horticultural Science and Biotechnology.
(2004 b);
79
995-1001
-
44
Fetter K., Van Wilder V., Moshelion M., Chaumont F..
Interactions between plasma membrane aquaporins modulate their water channel activity.
Plant Cell.
(2004);
16
215-228
-
45
Flowers T. J..
Improving crop salt tolerance.
Journal of Experimental Botany.
(2004);
55
307-319
-
46
Fukuda A., Chiba K., Maeda M., Nakamura A., Maeshima M., Tanaka Y..
Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley.
Journal of Experimental Botany.
(2004 a);
55
585-594
-
47
Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H., Tanaka Y..
Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice.
Plant and Cell Physiology.
(2004 b);
45
146-159
-
48
Galston A. W..
Plant biology - retrospect and prospect.
Current Science India.
(2001);
80
143-152
-
49
Garg A. K., Kim J. K., Owens T. G., Ranwala A. P., Do Choi Y., Kochian L. V., Wu R. J..
Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses.
Proceedings of the National Academy of Sciences of the USA.
(2002);
99
15898-15903
-
50
Garratt L. C., Janagoudar B. S., Lowe K. C., Anthony P., Power J. B., Davey M. R..
Salinity tolerance and antioxidant status in cotton cultures.
Free Radical Biology and Medicine.
(2002);
33
502-511
-
51
Gerbeau P., Amodeo G., Henzler T., Santoni V., Ripoche P., Maurel C..
The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH.
The Plant Journal.
(2002);
30
71-81
-
52 Gorham J., Wyn Jones R. G.. Genetics of salinity responses and plant breeding. Läuchli, A. and Lüttge, U., eds. Salinity: Environment - Plants - Molecules. Dordrecht, The Netherlands; Kluwer Academic Publishers (2002): 451-489
-
53
Grattan S. R., Grieve C. M..
Salinity-mineral nutrient relations in horticultural crops.
Scientia Horticulturae.
(1999);
78
127-157
-
54 Grattan S. R., Grieve C. M.. Mineral nutrient acquisition and response by plants grown in saline environments. Pessarakli, M., ed. Handbook of Plant and Crop Stress. New York, Basel, Hong Kong; Marcel Dekker (1993): 203-226
-
55
Greenway H., Munns R..
Mechanisms of salt tolerance in non-halophytes.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1980);
31
149-190
-
56
Guenther J. F., Chanmanivone N., Galetovic M. P., Wallace I. S., Cobb J. A., Roberts D. M..
Phosphorylation of soybean Nodulin 26 on Serine 262 enhances water permeability and is regulated developmentally and by osmotic signals.
Plant Cell.
(2003);
15
981-991
-
57
Halperin S. J., Gilroy S., Lynch J. P..
Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root hairs of Arabidopsis thaliana L.
Journal of Experimental Botany.
(2003);
54
1269-1280
-
58
Hamdia A. B. E., Shaddad M. A. K., Doaa M. M..
Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions.
Plant Growth Regulation.
(2004);
44
165-174
-
59
Hanba Y. T., Shibasaka M., Hayashi Y., Hayakawa T., Kasamo K., Terashima I., Katsuhara M..
Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants.
Plant and Cell Physiology.
(2004);
45
521-529
-
60
Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J..
Plant cellular and molecular responses to high salinity.
Annual Review of Plant Physiology and Plant Molecular Biology.
(2000);
51
463-499
-
61
Henzler T., Ye Q., Steudle E..
Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals.
Plant, Cell and Environment.
(2004);
27
1184-1195
-
62
Hill A. E., Shachar-Hill B., Shachar-Hill Y..
What are aquaporins for?.
Journal of Membrane Biology.
(2004);
197
1-32
-
63
Husain S., Von Caemmerer S., Munns R..
Control of salt transport from roots to shoots of wheat in saline soil.
Functional Plant Biology.
(2004);
31
1115-1126
-
64
James R. A., Rivelli A. R., Munns R., von Caemmerer S..
Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat.
Functional Plant Biology.
(2002);
29
1393-1403
-
65
Jang J. Y., Kim D. G., Kim Y. O., Kim J. S., Kang H. S..
An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana.
Plant Molecular Biology.
(2004);
54
713-725
-
66
Javot H., Maurel C..
The role of aquaporins in root water uptake.
Annals of Botany.
(2002);
90
301-313
-
67
Javot H., Lauvergeat V., Santoni V., Martin-Laurent F., Güclu J., Vinh J., Heyes J., Franck K. I., Schäffner A. R., Bouchez D., Maurel C..
Role of a single aquaporin isoform in root water uptake.
Plant Cell.
(2003);
15
509-522
-
68
Johanson U., Karlsson M., Johansson I., Gustavsson S., Sjovall S., Fraysse L., Weig A. R., Kjellbom P..
The complete set of genes encoding Major Intrinsic Proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants.
Plant Physiology.
(2001);
126
1358-1369
-
69
Johansson I., Karlsson M., Shukla V. K., Chrispeels M. J., Larsson C., Kjellborm P..
Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation.
Plant Cell.
(1998);
10
451-459
-
70
Johansson I., Larsson C., Ek B., Kjellborm P..
The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and water potential.
Plant Cell.
(1996);
8
1181-1191
-
71
Johnson K. D., Höfte H., Chrispeels M. J..
An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GlpF).
Plant Cell.
(1990);
2
525-532
-
72 Jones H. G., Jones M. B.. Introduction: some terminology and common mechanisms. Jones, H. G., Flowers, T. J., and Jones, M. B., eds. Plant Under Stress. Cambridge, New York, Melbourne; University Press (1989): 1-10
-
73
Kaldenhoff R., Eckert M..
Features and function of plant aquaporins.
Journal of Photochemistry and Photobiology, B: Biology.
(1999);
52
1-6
-
74
Kaldenhoff R., Grote K., Zhu J. J., Zimmermann U..
Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana.
The Plant Journal.
(1998);
14
121-128
-
75
Kammerloher W., Fischer U., Piechottka G. P., Schäffner A. R..
Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system.
The Plant Journal.
(1994);
6
187-199
-
76
Kasinathan V., Wingler A..
Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana.
Physiologia Plantarum.
(2004);
121
101-107
-
77
Katsuhara M., Akiyama Y., Koshio K., Shibasaka M., Kasamo K..
Functional analysis of water channels in barley roots.
Plant and Cell Physiology.
(2002);
43
885-893
-
78
Katsuhara M., Koshio K., Shibasaka M., Hayashi Y., Hayakawa T., Kasamo K..
Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants.
Plant and Cell Physiology.
(2003);
44
1378-1383
-
79
Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K., Galbraith D., Bohnert H. J..
Gene expression profiles during the initial phase of salt stress in rice.
Plant Cell.
(2001);
13
889-905
-
80
Kerstiens G., Tych W., Robinson M. F., Mansfield T. A..
Sodium-related partial stomatal closure and salt tolerance of Aster tripolium.
New Phytologist.
(2002);
153
509-515
-
81
Kinraide T. B..
Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects.
Journal of Experimental Botany.
(1999);
338
1495-1505
-
82
Knight H..
Calcium signalling during abiotic stress in plants.
International Review of Cytology.
(2000);
195
269-324
-
83
Lefevre I., Gratia E., Lutts S..
Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa).
Plant Science.
(2001);
161
943-952
-
84
Liu Q., Umeda M., Uchimiya H..
Isolation and expression analysis of two rice genes encoding the major intrinsic protein.
Plant Molecular Biology.
(1994);
26
2003-2006
-
85
Luan S., Kudla J., Rodríguez-Concepcion M., Yalovsky S., Gruissem W..
Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants.
Plant Cell.
(2002);
14
389-400
-
86
Luu D. T., Maurel C..
Aquaporins in a challenging environment: molecular gears for adjusting plant water status.
Plant, Cell and Environment.
(2005);
28
85-96
-
87
Lynch J., Läuchli A..
Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.).
New Phytologist.
(1985);
99
345-354
-
88
Lynch J., Läuchli A..
Salinity affects intracellular calcium in corn root protoplasts.
Plant Physiology.
(1988);
87
351-356
-
89
Maathuis F. J. M., Amtmann A..
K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios.
Annals of Botany.
(1999);
84
123-133
-
90
Maathuis F. J. M., Sanders D..
Contrasting role in ion transport of two K(+)-channel types in root cells of Arabidopsis thaliana.
Planta.
(1995);
197
456-464
-
91
Maathuis F. J. M., Filatov V., Herzyk P., Krijger G. C., Axelsen K. B., Chen S. X., Green B. J., Li Y., Madagan K. L., Sanchez-Fernandez R., Forde B. G., Palmgren M. G., Rea P. A., Williams L. E., Sanders D., Amtmann A..
Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress.
The Plant Journal.
(2003);
35
675-692
-
92
Maathuis F. J. M., Flowers T. J., Yeo A. R..
Sodium-chloride compartmentation in leaf vacuoles of the halophyte suaeda-maritima (L) dum and its relation to tonoplast permeability.
Journal of Experimental Botany.
(1992);
43
1219-1223
-
93
Maeshima M..
Vacuolar H+-pyrophosphatase.
Biochemica et Biophysica Acta - Biomembranes.
(2000);
1465
37-51
-
94
Maggio A., Joly R. J..
Effects of mercuric chloride on the hydraulic conductivity of tomato root systems.
Plant Physiology.
(1995);
109
331-335
-
95
Mansour M. M. F..
Nitrogen containing compounds and adaptation of plants to salinity stress.
Biologia Plantarum.
(2000);
43
491-500
-
96
Mansour M. M. F., Salama K. H. A..
Cellular basis of salinity tolerance in plants.
Environmental and Experimental Botany.
(2004);
52
113-122
-
97
Mansour M. M. F., Salama K. H. A., Al Mutawa M. M..
Transport proteins and salt tolerance in plants.
Plant Science.
(2003);
164
891-900
-
98 Marschner H.. Adaptation of plants to adverse chemical soil conditions. Marschner, H., ed. Mineral Nutrition of Higher Plants. London; Academic Press (1995): 596-681
-
99
Martínez-Ballesta M. C., Aparicio F., Pallas V., Martínez V., Carvajal M..
Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis.
.
Journal of Plant Physiology.
(2003 a);
160
689-697
-
100
Martinez-Ballesta M. C., Martinez V., Carvajal M..
Aquaporin functionality in relation to H+-ATPase activity in root cells of Capsicum annuum grown under salinity.
Physiologia Plantarum.
(2003 b);
117
413-420
-
101
Martinez-Ballesta M. C., Martinez V., Carvajal M..
Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCl.
Environmental and Experimental Botany.
(2004);
52
161-174
-
102
Martínez-Ballesta M. C., Martínez V., Carvajal M..
Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions.
Australian Journal of Plant Physiology.
(2000);
27
685-691
-
103
Martre P., Cochard H., Durand J. L..
Hydraulic architecture and water flow in growing grass tillers (Festuca arundinacea Schreb.).
Plant, Cell and Environment.
(2001);
24
65-76
-
104
Martre P., Morillon R., Barrieu F., North G. B., Nobel P. S., Chrispeels M. J..
Plasma membrane aquaporins play a significant role during recovery from water deficit.
Plant Physiology.
(2002);
130
2101-2110
-
105
Mäser P., Eckelman B., Vaidyanathan R., Horie T., Fairbairn D. J., Kubo M., Yamagami M., Yamaguchi K., Nishimura M., Uozumi N., Robertson W., Sussman M. R., Schroeder J. I..
Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1.
FEBS Letter.
(2002);
531
157-161
-
106
Maurel C., Chrispeels M. J..
Aquaporins. A molecular entry into plant water relations.
Plant Physiology.
(2001);
125
135-138
-
107
Maurel C., Javot H., Lauvergeat V., Gerbeau P., Tournaire C., Santoni V., Heyes J..
Molecular physiology of aquaporins in plants.
International Review of Cytology.
(2002);
215
135-138
-
108
Maurel C., Reizer J., Schroeder J. I., Chrispeels M. J..
The vacuolar membrane protein γ‐TIP creates water specific channels in Xenopus oocytes.
The EMBO Journal.
(1993);
12
2241-2247
-
109
Maurel C., Tacnet F., Güclü J., Guern J., Ripoche P..
Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
7103-7108
-
110
Mittova V., Guy M., Tal M., Volokita M..
Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii.
Journal of Experimental Botany.
(2004);
55
1105-1113
-
111
Munns R..
Comparative physiology of salt and water stress.
Plant, Cell and Environment.
(2002);
25
239-250
-
112
Munns R..
Genes and salt tolerance: bringing them together.
New Phytologist.
(2005);
167
645-663
-
113
Munns R., Passioura J. B..
Hydraulic resistance of plants. III. Effects of NaCl in barley and lupin.
Australian Journal of Plant Physiology.
(1984);
11
351-359
-
114
Murata Y., Katsura S., Obi I., Kakutani T..
Alterations in Ca2+-binding on plasma membrane after adaptation to salt stress of tobacco cells in suspension.
Plant and Cell Physiology.
(2000);
41
1286-1292
-
115
Navarro J. M., Martínez V., Carvajal M..
Ammonium, bicarbonate, and calcium effects on tomato plants grown under saline conditions.
Plant Science.
(2000);
157
89-96
-
116
Niemietz C. M., Tyerman S. D..
Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules.
FEBS Letter.
(2000);
465
110-114
-
117
Nuccio M. L., Rhodes D., McNeil S. D., Hanson A. D..
Metabolic engineering of plants for osmotic stress resistance.
Current Opinion in Plant Biology.
(1999);
2
128-134
-
118
Ohta M., Hayashi Y., Nakashima A., Hamada A., Tanaka A., Nakamura T., Hayakawa T..
Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice.
FEBS Letter.
(2002);
532
279-282
-
119
Palmgren M. G..
Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake.
Annual Review of Plant Physiology and Plant Molecular Biology.
(2001);
52
817-845
-
120
Perruc E., Charpenteau M., Ramirez B. C., Jauneau A., Galaud J. P., Ranjeva R., Ranty B..
A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings.
The Plant Journal.
(2004);
38
410-420
-
121
Peyrano G., Taleisnik E., Quiroga M., de Forchetti S. M., Tigier H..
Salinity effects on hydraulic conductance, lignin content and peroxidase activity in tomato roots.
Plant Physiology and Biochemistry.
(1997);
35
387-393
-
123
Rathinasabapathi B..
Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways.
Annals of Botany.
(2000);
86
709-716
-
124
Reid R. J., Smith F. A..
The limits of sodium/calcium interactions in plant growth.
Australian Journal of Plant Physiology.
(2000);
27
709-715
-
125
Renault S..
Response of red-osier dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of supplemental calcium.
Physiologia Plantarum.
(2005);
123
75-81
-
126 Rhodes D., Nadolska-Orczyk A., Rich P. J.. Salinity, osmolytes and compatible solutes. Läuchli, A. and Lüttge, U., eds. Salinity: Environment - Plants Molecules. Dordrecht, The Netherlands; Kluwer Academic Publishers (2002): 181-204
-
127
Rubio F., Flores P., Navarro J. M., Martínez V..
Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants.
Plant Science.
(2003);
165
1043-1049
-
128
Sakurai J., Ishikawa F., Yamaguchi T., Uemura M., Maeshima M..
Identification of 33 rice aquaporin genes and analysis of their expression and function.
Plant and Cell Physiology.
(2005);
46
1568-1577
-
129
Sanders D., Brownlee C., Harper J. F..
Communicating with calcium.
Plant Cell.
(1999);
11
691-706
-
130
Santa-Cruz A., Acosta M., Rus A., Bolarin M. C..
Short-term salt tolerance mechanisms in differentially salt tolerant tomato species.
Plant Physiology and Biochemistry.
(1999);
37
65-71
-
131
Seki M., Narusaka M., Ishida J., Nanjo T., Fujita M., Oono Y., Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K., Taji T., Yamaguchi-Shinozaki K., Carninci P., Kawai J., Hayashizaki Y., Shinozaki K..
Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.
The Plant Journal.
(2002);
31
279-292
-
132
Serrano R., Gaxiola R..
Microbial models and salt stress tolerance in plants.
Critical Reviews in Plant Sciences.
(1994);
13
121-138
-
133
Shabala S., Shabala L., Van Volkenburgh E..
Effect of calcium on root development and root ion fluxes in salinised barley seedlings.
Functional Plant Biology.
(2003);
30
507-514
-
134
Shannon M. C..
Adaptation of plants to salinity.
Advances in Agronomy.
(1997);
60
75-119
-
135 Shannon M. C., Grieve C. M., Francois L. E.. Whole-plant response to salinity. Wilkinson, R. E., ed. Plant Environment Interactions. New York; Marcel Dekker (1994): 199-244
-
136
Shomerilan A., Jones G. P., Paleg L. G..
In vitro thermal and salt stability of pyruvate-kinase are increased by proline analogs and trigonelline.
Australian Journal of Plant Physiology.
(1991);
18
279-286
-
137
Sibole J. V., Cabot C., Poschenrieder C., Barcelo J..
Efficient leaf ion partitioning, an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes.
Journal of Experimental Botany.
(2003);
54
2111-2119
-
138
Siefritz F., Tyree M. T., Lovisolo C., Schubert A., Kaldenhoff R..
PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants.
Plant Cell.
(2002);
14
869-876
-
139
Singh N. K., Bracker C. A., Hasegawa P. M., Handa A. K., Buckel S., Hermodson M. A., Pfankoch E., Regnier F. E., Bressan R. A..
Characterization of osmotin - a thaumatin-like protein associated with osmotic adaptation in plant cells.
Plant Physiology.
(1987);
85
529-536
-
140 Steudle E.. The regulation of plant water at the cell, tissue, and organ level: role of active processes and of compartmentation. Schultze, E. D., ed. Flux Control in Biological Systems. From Enzymes to Populations and Ecosystems. San Diego, CA; Academic Press, Inc. (1994): 237-299
-
141
Steudle E..
Water uptake by roots: effects of water deficit.
Journal of Experimental Botany.
(2000);
51
1531-1542
-
142
Steudle E..
The cohesion-tension mechanism and the acquisition of water by plant roots.
Annual Review of Plant Physiology and Plant Molecular Biology.
(2001);
52
847-875
-
143
Steudle E., Henzler T..
Water channels in plants: do basic concepts of water transport change?.
Journal of Experimental Botany.
(1995);
46
1067-1076
-
144
Steudle E., Peterson C. A..
How does water get through roots?.
Journal of Experimental Botany.
(1998);
49
775-788
-
145
Suga S., Komatsu S., Maeshima M..
Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings.
Plant and Cell Physiology.
(2002);
43
1229-1237
-
146
Sunarpi T. H., Motoda J., Kubo M., Yang H., Yoda K., Horie R., Chan W. Y., Leung H. Y., Hattori K., Konomi M., Osumi M., Yamagamis M., Schroeder J. I., Uozumi N..
Enhanced salt tolerance mediated by AtHKT1 transporter induced Na+ unloading from xylem vessels to xylem parenchyma cells.
The Plant Journal.
(2005);
44
928-938
-
147 Taiz L., Zeiger E.. Stress Physiology. Plant Physiology. Redwood City, CA; The Benjamin/Cummings Publishing Company (1991): 346-370
-
148
Terashima I., Ono K..
Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane.
Plant and Cell Physiology.
(2002);
43
70-78
-
149
Tester M., Davenport R..
Na+ tolerance and Na+ transport in higher plants.
Annals of Botany.
(2003);
91
503-507
-
150
Tournaire-Roux C., Sutka M., Javot H., Gout E., Gerbeau P., Luu D. T., Bligny R., Maurel C..
Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins.
Nature.
(2003);
425
393-397
-
151
Turkan I., Bor M., Ozdemir F., Koca H..
Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P-acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress.
Plant Science.
(2005);
168
223-231
-
152
Tyerman S. D., Bohnert H. J., Maurel C., Steudle E., Smith J. A. C..
Plant aquaporins: their molecular biology, biophysics and significance for plant water relations.
Journal of Experimental Botany.
(1999);
50
1055-1071
-
153
Tyerman S. D., Niemietz C. M., Bramley H..
Plant aquaporins: multifunctional water and solute channels with expanding roles.
Plant, Cell and Environment.
(2002);
25
173-194
-
154
Uehlein N., Lovisolo C., Siefritz F., Kaldenhoff R..
The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions.
Nature.
(2003);
425
734-737
-
155
Uno Y., Urao T., Yamaguchi-Shinozaki K., Kanechi M., Inagaki N., Maekawa S., Shinozaki K..
Early salt-stress effects on expression of genes for aquaporin homologues in the halophyte see aster (Aster tripolium L.).
Journal of Plant Research.
(1998);
111
411-419
-
156
Vaidyanathan H., Sivakumar P., Chakrabarty R., Thomas G..
Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - differential response in salt-tolerant and sensitive varieties.
Plant Science.
(2003);
165
1411-1418
-
157
Vera-Estrella R., Barkla B. J., Bohnert H. J., Pantoja O..
Novel regulation of aquaporins during osmotic stress.
Plant Physiology.
(2004);
135
2318-2329
-
158
Very A. A., Robinson M. F., Mansfield T. A., Sanders D..
Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte.
The Plant Journal.
(1998);
14
509-521
-
159
Wan X., Steudle E., Hartung W..
Gating of water channel (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2.
Journal of Experimental Botany.
(2004);
55
411-422
-
160
Wang B. S., Ratajczak R., Zhang J. H..
Activity, amount and subunit composition of vacuolar-type H+-ATPase and H+-PPase in wheat roots under severe NaCl stress.
Journal of Plant Physiology.
(2000);
157
109-116
-
161
Webb M. A..
Cell-mediated crystallization of calcium oxalate in plants.
Plant Cell.
(1999);
11
751-761
-
162
White P. J..
The pathways of calcium movement to the xylem.
Journal of Experimental Botany.
(2001);
2
891-899
-
163
White P. J., Broadley M. R..
Calcium in plants.
Annals of Botany.
(2003);
92
487-511
-
164
Wu C. A., Yang G. D., Meng Q. W., Zheng C. C..
The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress.
Plant and Cell Physiology.
(2004);
45
600-607
-
165
Yamada S., Komori T., Myers P. N., Kuwata S., Kubo T., Imaseki S..
Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior.
Plant and Cell Physiology.
(1997);
38
1226-1231
-
166
Yan S. P., Tang Z. C., Su W., Sun W. N..
Proteomic analysis of salt stress-responsive proteins in rice root.
Proteomics.
(2005);
5
235-244
-
167
Ye Q., Wiera B., Steudle E..
A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration.
Journal of Experimental Botany.
(2004);
55
449-461
-
168
Zhang H. X., Blumwald E..
Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.
Nature Biotechnology.
(2001);
19
765-768
-
169
Zhu C., Schraut D., Hartung W., Schäffner A. R..
Differential responses of maize MIP genes to salt stress and ABA.
Journal of Experimental Botany.
(2005);
56
2971-2981
-
170
Zhu J. K..
Plant salt tolerance.
Trends in Plant Science.
(2001);
6
66-71
-
171
Zimmermann H. M., Steudle E..
Apoplastic transport across young maize roots: effect of the exodermis.
Planta.
(1998);
206
7-19
M. Carvajal
Departamento de Nutrición Vegetal
Centro de Edafología y Biología Aplicada del Segura - CSIC
Apdo. Correos 164
30100 Espinardo, Murcia
Spain
eMail: mcarvaja@cebas.csic.es
Editor: J. Schroeder