Abstract
A highly efficient sulfur-catalyzed oxidative carbonylation of aliphatic amines and
aliphatic β-amino alcohols to ureas and 2-oxazolidinones, respectively, was developed.
Sodium nitrite was involved in the reoxidation of hydrogen sulfide to sulfur in the
catalytic oxidative carbonylation cycle.
Key words
sulfur - oxidative carbonylation - amine - β-aminoalcohol - catalysis
References and Notes
<A NAME="RW38505ST-1A">1a </A>
Dunetz JR.
Danheiser RL.
Org. Lett.
2003,
5:
4011
<A NAME="RW38505ST-1B">1b </A>
Ferraccioli R.
Carenzi D.
Synthesis
2003,
1383
<A NAME="RW38505ST-1C">1c </A>
Lee SH.
Clapham B.
Koch G.
Zimmermann J.
Janda KD.
Org. Lett.
2003,
5:
511
<A NAME="RW38505ST-1D">1d </A>
Yoshida H.
Shirakawa E.
Honda Y.
Hiyama T.
Angew. Chem. Int. Ed.
2002,
41:
3247
<A NAME="RW38505ST-1E">1e </A>
Humphrey JM.
Liao YS.
Ali A.
Rein T.
Wong YL.
Chen HJ.
Courtney AK.
Martin SF.
J. Am. Chem. Soc.
2002,
124:
8584
<A NAME="RW38505ST-2A">2a </A>
Seydenpenne J.
Chiral Auxiliaries and Ligands in Asymmetric Synthesis
Wiley;
New York:
1995.
<A NAME="RW38505ST-2B">2b </A>
Ager DJ.
Prakash I.
Schaad DR.
Chem. Rev.
1996,
96:
835
<A NAME="RW38505ST-2C">2c </A>
Catalytic Asymmetric Synthesis
Ojima I.
Wiley;
New York:
2000.
<A NAME="RW38505ST-3A">3a </A>
Bigi F.
Maggi R.
Sartori G.
Green Chem.
2000,
2:
140
<A NAME="RW38505ST-3B">3b </A>
Maya I.
Lopez O.
Maza S.
Fernandez-Bolanos JG.
Fuentes J.
Tetrahedron Lett.
2003,
44:
8539
<A NAME="RW38505ST-3C">3c </A>
Grzyb JA.
Batey RA.
Tetrahedron Lett.
2003,
44:
7485
<A NAME="RW38505ST-3D">3d </A>
Lemoucheux L.
Rouden J.
Ibazizene M.
Sobrio F.
Lasne MC.
J. Org. Chem.
2003,
68:
7289
<A NAME="RW38505ST-3E">3e </A>
Reddy PVG.
Babu YH.
Reddy CS.
J. Heterocycl. Chem.
2003,
40:
535
<A NAME="RW38505ST-4A">4a </A>
Nomura R.
Hasegawa Y.
Ishimoto M.
Toyosaki T.
Matsuda H.
J. Org. Chem.
1992,
57:
7339
<A NAME="RW38505ST-4B">4b </A>
Bigi F.
Maggi R.
Sartori G.
Green Chem.
2000,
2:
140
<A NAME="RW38505ST-4C">4c </A>
Alba M.
Choi J.
Sakakura T.
Chem. Commun.
2001,
2238
<A NAME="RW38505ST-4D">4d </A>
Abla M.
Choi J.-C.
Sakakura T.
Green Chem.
2004,
6:
524
<A NAME="RW38505ST-5A">5a </A>
Minisci F.
Coppa F.
Fontana F.
Chem. Commun.
1994,
679
<A NAME="RW38505ST-5B">5b </A>
Shi F.
Deng Y.
SiMa T.
Peng J.
Gu Y.
Qiao B.
Angew. Chem. Int. Ed.
2003,
42:
3257
<A NAME="RW38505ST-6">6 </A>
Giannoccaro P.
De Giglio E.
Gargano M.
Aresta M.
Ferragina C.
J. Mol. Catal. A: Chem.
2000,
157:
131
<A NAME="RW38505ST-7A">7a </A>
Shi F.
Deng Y.
SiMa T.
Yang H.
Tetrahedron Lett.
2001,
42:
2161
<A NAME="RW38505ST-7B">7b </A>
Mulla SAR.
Rode CV.
Kelkar AA.
Gupte SP.
J. Mol. Catal.
1997,
122:
103
<A NAME="RW38505ST-8A">8a </A>
Yang H.
Deng Y.
Shi F.
J. Mol. Catal. A: Chem.
2001,
176:
73
<A NAME="RW38505ST-8B">8b </A>
Chiarotto I.
Feroci M.
J. Org. Chem.
2003,
68:
7137
<A NAME="RW38505ST-8C">8c </A>
Gabriele B.
Mancuso R.
Salerno G.
Costa M.
J. Org. Chem.
2003,
68:
601
<A NAME="RW38505ST-8D">8d </A>
Gabriele B.
Salerno G.
Mancuso R.
Costa M.
J. Org. Chem.
2004,
69:
4741
<A NAME="RW38505ST-8E">8e </A>
Gabriele B.
Salerno G.
Brindisi D.
Costa M.
Chiusoli GP.
Org. Lett.
2000,
2:
625
<A NAME="RW38505ST-8F">8f </A>
Gabriele B.
Mancuso R.
Salerno G.
Costa M.
Chem. Commun.
2003,
4:
486
<A NAME="RW38505ST-9A">9a </A>
Sonoda N.
Pure Appl. Chem.
1993,
65:
699
<A NAME="RW38505ST-9B">9b </A>
Kondo K.
Murata K.
Miyoshi N.
Murai S.
Sonoda N.
Synthesis
1979,
735
<A NAME="RW38505ST-9C">9c </A>
Kondo K.
Yokoyama S.
Miyoshi N.
Murai S.
Sonoda N.
Angew. Chem., Int. Ed. Engl.
1979,
18:
692
<A NAME="RW38505ST-10A">10a </A>
Franz RA.
Applegath F.
J. Org. Chem.
1961,
26:
3304
<A NAME="RW38505ST-10B">10b </A>
Franz RA.
Applegath F.
Morriss FV.
Baiocchi F.
J. Org. Chem.
1961,
26:
3306
<A NAME="RW38505ST-10C">10c </A>
Franz RA.
Applegath F.
Morriss FV.
Baiocchi F.
Bolze C.
J. Org. Chem.
1961,
26:
3309
<A NAME="RW38505ST-10D">10d </A>
Franz RA.
Applegath F.
Morriss FV.
Baiocchi F.
Breed LW.
J. Org. Chem.
1962,
27:
4341
<A NAME="RW38505ST-11">11 </A>
Liu R.
Liang X.
Dong C.
Hu X.
J. Am. Chem. Soc.
2004,
126:
4112
<A NAME="RW38505ST-12">12 </A>
General Experimental Procedure.
All oxidative carbonylation experiments were carried out in a 100 mL autoclave equipped
with magnetic stirring and automatic temperature control. The amine or ethanolamine
(20 mmol), sulfur (1 mmol), NaNO2 (10 mmol), and MeOH (6 mL) were charged into the reactor. Then, the autoclave was
flushed three times with CO and pressurized with CO to a pressure of 40 atm. The autoclave
was placed in oil bath that was preheated to 120 °C, and the whole reaction mixture
was stirred for 10 h. After the reaction, the autoclave was cooled, excess gas was
purged, and the reaction mixture was filtered. Qualitative analyses were conducted
with a HP 6890/5973 GCMS and quantitative analyses were carried out over a Agilent
6820 GC (FID detector).