J Reconstr Microsurg 2006; 22(1): 053-058
DOI: 10.1055/s-2006-931908
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Robotics in Plastic and Reconstructive Surgery: Use of a Telemanipulator Slave Robot to Perform Microvascular Anastomoses

Ryan D. Katz1 , Jesse A. Taylor1 , Gedge D. Rosson1 , Phillip R. Brown1 , Navin K. Singh1
  • 1The Johns Hopkins University School of Medicine, Baltimore, MD
Further Information

Publication History

Accepted: September 20, 2005

Publication Date:
19 January 2006 (online)

ABSTRACT

Many methods for microvascular anastomoses exist, including use of magnifying loupes (× 2.5, × 3.5, × 4.5, × 6), but the operating microscope remains the gold standard. The authors present the da Vinci® Surgical System (Intuitive Surgical, Sunnyvale, CA) as an alternative method for performing microvascular anastomoses. The da Vinci robot has fully articulating microinstruments with six degrees of freedom, the ability to filter tremor, the capability to perform telesurgery, and the advantage of 3-D visualization. It offers full and dynamic control over the operating camera, allowing variable positioning and the ability to scale down movements. Its drawbacks include initial high cost, lack of haptic feedback, decreased participation of the first assistant, and lack of widespread availability.

In this feasibility study, multiple microanastomoses were performed in canine tarsal and superficial femoral vessels.

REFERENCES

  • 1 Ballantyne G. Robotic surgery, telerobotic surgery, telepresence, and telemonitoring.  Surge Endosc. 2002;  16 1389-1402
  • 2 Stephenson Jr E, Sankholkar S. Robotically assisted microsurgery for endoscopic coronary artery bypass grafting.  Ann Thorac Surg. 1998;  66 1064-1067
  • 3 Bonatti J, Schachner T. Robotic totally endoscopic coronary artery bypass: program development and learning curve issues.  J Thorac Cardiovasc Surg. 2004;  127 504-510
  • 4 Tatooles A, Pappas P. Minimally invasive mitral valve repair using the da Vinci robotic system.  Ann Thorac Surg. 2004;  77 1978-1982 discussion 1982-1984
  • 5 Bentas W, Wolfram M. Robotic technology and the translation of open radical prostatectomy to laparoscopy: the early Frankfurt experience with robotic radical prostatectomy and one year follow-up.  Eur Urol. 2003;  44 175-181
  • 6 Horgan S, Vanuno D. Early experience with robotically assisted laparoscopic donor nephrectomy.  Surg Laparosc Endosc Percutan Tech. 2002;  12 64-70
  • 7 Horgan S, Vanuno D. Robots in laparoscopic surgery.  J Laparoendosc Adv Surg Tech A. 2001;  11 415-419
  • 8 Ayav A, Bresler L. Early results of one-year robotic surgery using the da Vinci system to perform advanced laparoscopic procedures.  J Gastrointest Surg. 2004;  8 720-726
  • 9 Khouri R, Cooley B. A prospective study of microvascular free-flap surgery and outcome.  Plast Reconstr Surg. 1998;  102 711-721
  • 10 Kelly J, Eadie P. Prospective evaluation of outcome measures in free-flap surgery.  J Reconstr Microsurg. 2004;  20 435-438
  • 11 Siemionow M, Ozer K. Robotic assistance in microsurgery.  J Reconstr Microsurg. 2000;  16 643-649
  • 12 Le Roux P, Das H. Robot-assisted microsurgery: a feasibility study in the rat.  Neurosurgery. 2001;  48 584-589
  • 13 Hanly E, Marohn M. Multiservice laparoscopic surgical training using the da Vinci surgical system.  Am J Surg. 2004;  187 309-315
  • 14 Yohannes P, Rotariu P. Comparison of robotic versus laparoscopic skills: is there a difference in the learning curve?.  Urology. 2002;  60 39-45 discussion 45
  • 15 Cadiere G B, Himpens J. Feasibility of robotic laparoscopic surgery: 146 cases.  World J Surg. 2001;  25 1467-1477
  • 16 Talamini M, Chapman S. A prospective analysis of 211 robotic-assisted surgical procedures.  Surg Endosc. 2003;  17 1521-1524 , Epub 2003 Aug 15
  • 17 Brett P, Ma X. The potential of robotic technology applied to meet requirements for tools to support microsurgery and cellular surgery.  Cell Mol Biol. 2004;  50 275-280
  • 18 Li R, Jensen J. Microvascular anastomoses performed in rats using a microsurgical telemanipulator.  Computer Aided Surg. 2000;  5 326-332

Navin K SinghM.D. M.S. 

Division of Plastic, Reconstructive, and Maxillofacial Surgery, The Johns Hopkins University School of Medicine, McElderry 8152-C, 601 N. Caroline, Baltimore, MD 21287-0980

    >