Synlett 2006(8): 1177-1180  
DOI: 10.1055/s-2006-932487
LETTER
© Georg Thieme Verlag Stuttgart · New York

A New Synthesis of Tetrahydrofuran Fragment of Amphidinolides X and Y

Yile Chena, Jian Jina, Jinlong Wua, Wei-Min Dai*a,b
a Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
Fax: +86(571)87953128; e-Mail: [email protected];
b Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. of China
Fax: +85223581594; e-Mail: [email protected];
Further Information

Publication History

Received 29 November 2005
Publication Date:
10 March 2006 (online)

Abstract

A new synthesis of the tetrasubstituted tetrahydrofuran fragment of the marine secondary metabolites amphidinolides X and Y is described. The oxygenated chiral quaternary carbon was assembled by asymmetric dihydroxylation in high enantioselec­tivity and the tetrahydrofuran ring was constructed by an acid-catalyzed 5-endo ring-opening cyclization of the epoxide possessing a vinyl moiety.

    References and Notes

  • 1 Kobayashi J. Tsuda M. Nat. Prod. Rep.  2004,  21:  77 
  • 2 Tsuda M. Izui N. Shimbo K. Sato M. Fukushi E. Kawabata J. Kobayashi J. J. Org. Chem.  2003,  68:  9109 
  • 3 Tsuda M. Izui N. Shimbo K. Sato M. Fukushi E. Kawabata J. Kkatsumata K. Horiguchi T. Kobayashi J. J. Org. Chem.  2003,  68:  5339 
  • 4 Total synthesis of amphidinolide X, see: Lepage O. Kattnig E. Fürstner A. J. Am. Chem. Soc.  2004,  126:  15970 
  • 5a Corey EJ. Guzman-Perez A. Noe MC. J. Am. Chem. Soc.  1995,  117:  10805 
  • 5b For the 2-propyl homologue of 3, see: Hayes PY. Kitching W. J. Am. Chem. Soc.  2002,  124:  9718 
  • 6 Narayan RS. Sivakumar M. Bouhle E. Borhan B. Org. Lett.  2001,  3:  2489 
  • 7 Johnson RA. Sharpless KB. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  p.231 
  • For a recent example of asymmetric homoallylic epoxidation, see:
  • 8a Makita N. Hoshino Y. Yamamoto H. Angew. Chem. Int. Ed.  2003,  42:  941 
  • 8b See also: Rossiter BE. Sharpless KB. J. Org. Chem.  1984,  49:  3707 
  • 9 Katsuki T. Sharpless KB. J. Am. Chem. Soc.  1980,  102:  5974 
  • 10 Coxon JM. Hartshorn MP. Swallow WH. Aust. J. Chem.  1973,  26:  2521 
  • For selected examples of other modes of epoxide ring-opening cyclization, see:
  • 11a Nakata T. Kishi Y. Tetrahedron Lett.  1978,  2745 
  • 11b Nakata N. Schmid G. Vranesic B. Okigawa M. Smith-Palmer T. Kishi Y. J. Am. Chem. Soc.  1978,  100:  2933 
  • 11c Nicolaou KC. Brasad CVC. Somers PK. Hwang C.-K. J. Am. Chem. Soc.  1989,  111:  5330 
  • 11d Nicolaou KC. Prasad CVC. Somers PK. Hwang C.-K. J. Am. Chem. Soc.  1989,  111:  5335 
  • 11e Mukai C. Ikeda Y. Sugimoto Y. Hanaoka M. Tetrahedron Lett.  1994,  35:  2179 
  • 11f Fujiwara K. Tokiwano T. Murai A. Tetrahedron Lett.  1995,  36:  8063 
  • 11g Fujiwara K. Mishima H. Amano A. Tokiwano T. Murai M. Tetrahedron Lett.  1998,  39:  393 
  • 11h Evans PA. Murthy VS. Tetrahedron Lett.  1999,  40:  1253 
  • 12 Ley SV. Norman J. Griffith WP. Marsden SP. Synthesis  1994,  639 
13

Spectroscopic data of 23: [α]D 20 -23.3 (c 0.60, CHCl3). IR (film): 2959, 2932, 1613, 1514, 1249, 1111, 1090, 1072, 1037 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.30-7.23 and 6.89-6.86 (A2B2, 4 H), 5.86 (ddd, J = 17.6, 10.8, 6.8 Hz, 1 H), 5.35 (dt, J = 17.2, 1.6 Hz, 1 H), 5.15 (dt, J = 10.4, 1.6 Hz, 1 H), 4.47 and 4.43 (ABq, J = 11.6 Hz, 2 H), 4.38 (dd, J = 6.4, 6.4 Hz, 1 H), 3.86-3.80 (m, 1 H), 3.80 (s, 3 H), 2.03 (dd, J = 12.8, 8.0 Hz, 1 H), 1.81 (dd, J = 13.2, 5.2 Hz, 1 H), 1.52-1.46 (m, 2 H), 1.40-1.32 (m, 2 H), 1.33 (s, 3 H), 0.92 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 159.1, 137.8, 130.2, 129.1 (2×), 116.2, 113.7 (2×), 84.0, 83.5, 83.0, 71.4, 55.2, 45.0, 42.3, 26.3, 17.8, 14.6. MS (+ESI): m/z (%) = 603 (80) [2 M + Na+], 313 (100) [M + Na+],
290 (10) [M+]. HRMS (+ESI): m/z calcd for C18H26O3Na+: 313.1780 [M + Na+]; found: 313.1776.

14

Spectroscopic data of 24: [α]D 20 -52.2 (c 0.8, CHCl3, >96% ee); lit. (ref. 4) [α]D 20 -37.1 (c 1.0, CHCl3, 83% ee). 1H NMR (400 MHz, CDCl3): δ = 7.24 (d, J = 8.5 Hz, 2 H), 6.88 (d, J = 8.5 Hz, 2 H), 4.48 and 4.39 (ABq, J = 11.5 Hz, 2 H), 4.06 (ddd, J = 8.5, 5.0, 5.0 Hz, 1 H), 3.81 (s, 3 H), 3.80-3.74 (m, 3 H), 2.96 (br s, 1 H), 2.05 (dd, J = 12.5, 8.0 Hz, 1 H), 1.89-1.70 (m, 2 H), 1.78 (dd, J = 13.0, 5.0 Hz, 1 H), 1.50-1.45 (m, 2 H), 1.38-1.28 (m, 2 H), 1.31 (s, 3 H), 0.92 (t, J = 7.5 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 159.2, 129.8, 129.2 (2×), 113.9 (2×), 83.4, 83.2, 82.1, 71.5, 61.3, 55.2, 45.0, 42.3, 35.9, 26.3, 17.7, 14.5. MS (+ESI): m/z (%) = 639 (100) [2 M + Na+], 617 (53) [2 M + H+], 331 (100) [M + Na+], 309 (64) [M + H+]. HRMS (+ESI): m/z calcd for C18H28O4Na+: 331.1885 [M + Na+]; found: 331.1876.