References and Notes
For excellent reviews on recent advances in Au-catalysis, see:
<A NAME="RU30505ST-1A">1a</A>
Hashmi ASK.
Gold Bull.
2004,
37:
51
<A NAME="RU30505ST-1B">1b</A>
Hoffmann-Roder A.
Krause N.
Org. Biomol. Chem.
2005,
3:
387
For more recent reports not cited in these reviews, see:
<A NAME="RU30505ST-1C">1c</A>
Hashmi ASK.
Weyrauch JP.
Frey W.
Bats JW.
Org. Lett.
2004,
6:
4391
<A NAME="RU30505ST-1D">1d</A>
Zhang L.
Kozmin SA.
J. Am. Chem. Soc.
2004,
126:
6962
<A NAME="RU30505ST-1E">1e</A>
Zhang L.
Kozmin SA.
J. Am. Chem. Soc.
2004,
126:
11806
<A NAME="RU30505ST-1F">1f</A>
Hashmi ASK.
Rudolph M.
Weyrauch JP.
Wolfle M.
Frey W.
Bats JW.
Angew. Chem. Int. Ed.
2005,
44:
2798
<A NAME="RU30505ST-1G">1g</A>
Shi X.
Gorin DJ.
Toste FD.
J. Am. Chem. Soc.
2005,
127:
5802
<A NAME="RU30505ST-1H">1h</A>
Nieto-Oberhuber C.
Lopez S.
Echavarren AM.
J. Am. Chem. Soc.
2005,
127:
6178
<A NAME="RU30505ST-1I">1i</A>
Markham JP.
Staben ST.
Toste FD.
J. Am. Chem. Soc.
2005,
127:
9708
<A NAME="RU30505ST-1J">1j</A>
Gorin DJ.
Davies NR.
Toste FD.
J. Am. Chem. Soc.
2005,
127:
11260
<A NAME="RU30505ST-1K">1k</A>
Asao N.
Sato K.
Menggenbateer .
Yamamoto Y.
J. Org. Chem.
2005,
70:
3682
<A NAME="RU30505ST-1L">1l</A>
Sato K.
Asao N.
Yamamoto Y.
J. Org. Chem.
2005,
70:
8977
<A NAME="RU30505ST-1M">1m</A>
Kim N.
Kim Y.
Sung D.
Gupta AK.
Oh CH.
Org. Lett.
2005,
7:
5289
<A NAME="RU30505ST-2">2</A>
Maddess ML.
Lautens M.
Synthesis
2004,
1399
<A NAME="RU30505ST-3A">3a</A>
Trost BM.
Ball ZT.
Joege T.
Angew. Chem. Int. Ed.
2003,
42:
3415
<A NAME="RU30505ST-3B">3b</A>
Davies HML.
Beckwith RE.
Antoulinakis EG.
Jin Q.
J. Org. Chem.
2003,
68:
6126
<A NAME="RU30505ST-3C">3c</A>
Bode JW.
Carreira EK.
J. Org. Chem.
2001,
66:
6410
<A NAME="RU30505ST-3D">3d</A>
Nelson SG.
Wan Z.
Org. Lett.
2000,
2:
1883
<A NAME="RU30505ST-3E">3e</A>
Nelson SG.
Zhu C.
Shen X.
J. Am. Chem. Soc.
2003,
126:
14
Allyl or homoallyl carbonates:
<A NAME="RU30505ST-4A">4a</A>
Bartlett PA.
Meadows JD.
Brown EG.
Morimoto A.
Jernstedt KK.
J. Org. Chem.
1982,
47:
4013
<A NAME="RU30505ST-4B">4b</A>
Bongini A.
Cardillo G.
Orena M.
Porzi G.
Sandri S.
J. Org. Chem.
1982,
47:
4626
<A NAME="RU30505ST-4C">4c</A>
Duan JJ.-W.
Smith AB.
J. Org. Chem.
1993,
58:
3703
<A NAME="RU30505ST-4D">4d</A>
Smith AB.
Friestad GK.
Barbosa J.
Bertounesque E.
Hull KG.
Iwashima M.
Qui Y.
Salvatore BA.
Spoors PG.
Duan JJ.-W.
J. Am. Chem. Soc.
1999,
121:
10468
Propargyl carbonates:
<A NAME="RU30505ST-4E">4e</A>
Fournier J.
Bruneau C.
Dixneuf PH.
Tetrahedron Lett.
1989,
30:
3981
<A NAME="RU30505ST-4F">4f</A>
Inoue Y.
Ohuchi K.
Imaizumi S.
Tetrahedron Lett.
1988,
29:
5941
<A NAME="RU30505ST-4G">4g</A>
Iritani K.
Yanagihara N.
Utimoto K.
J. Org. Chem.
1986,
51:
5501
<A NAME="RU30505ST-5A">5a</A>
Marshall JA.
J. Org. Chem.
1999,
64:
3798
<A NAME="RU30505ST-5B">5b</A>
Raimundo BC.
Heathcock CH.
Org. Lett.
2000,
2:
27
<A NAME="RU30505ST-6A">6a</A>
Trost BM.
Science
1991,
254:
1471
<A NAME="RU30505ST-6B">6b</A>
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259
<A NAME="RU30505ST-7">7</A>
The β-hydroxyketone 3a is formed during the reaction, not during the subsequent workup. For example, upon
a long-term storage of 2a, there was no change in the spectral integrity or in its TLC profile.
<A NAME="RU30505ST-8">8</A> Typical side products formed at an early stage of the reaction and showed multiple
non-polar spots in TLC, which could not be unambiguously identified. A similar observation
was made by Gagosz:
Gagosz F.
Org. Lett.
2005,
7:
4129
<A NAME="RU30505ST-9A">9a</A>
Kang JE.
Lee ES.
Park SI.
Shin S.
Tetrahedron Lett.
2005,
46:
7431
<A NAME="RU30505ST-9B">9b</A>
Shin S.
Bull. Korean Chem. Soc.
2005,
26:
1925
<A NAME="RU30505ST-10">10</A>
Representative Procedure for the Cyclization of 1d into 2d.
To a solution of 1d (100 mg, 0.384 mmol) in 1,2-dichloro-ethane (2 mL) at 0 °C, was added Au(PAr3)Cl (Ar = C6F5) (14.3 mg, 19.2 µmol), followed by AgSbF6 (6.6 mg, 19.2 µmol). Upon addition of AgSbF6, the color of the reaction mixture immediately turned to orange. The reaction mixture
was kept at 0 °C for 15 h, then was slowly allowed to warm to r.t. over 5 h. After
the reaction was judged to be complete by TLC, the crude mixture was concentrated
to ca. 0.5 mL and was loaded on silica gel column and was eluted with EtOAc-hexane
(1:4) to obtain 62.8 mg (80%) of 2d as pale yellow oil, along with 5.7 mg (8%) of hydrolyzed by-product, 3d.
For compound 2a see ref. 2.
Compound 2b: IR: 1777 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.40 (d, J = 7.9 Hz, 2 H), 7.31 (d, J = 7.8 Hz, 2 H), 5.42 (dd, J = 3.3, 10.7 Hz, 1 H), 4.87 (dd, J = 1.5, 2.2 Hz, 1 H), 4.44 (app t, J = 1.8 Hz, 1 H), 2.93 (dd, J = 3.3, 15.4 Hz, 1 H), 2.76 (tdd, J = 1.5, 10.6, 15.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 150.8, 146.7, 135.9, 135.6, 129.9, 127.8, 95.8, 78.7, 33.8. MS (EI): m/z = 181 [M - CO2 + H].
Compound 2c: IR: 1779 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.33 (t, J = 7.7 Hz, 1 H), 6.94-6.88 (m, 3 H), 5.41 (dd, J = 3.3, 10.6 Hz, 1 H), 4.86 (app t, J = 1.8 Hz, 1 H), 4.42 (app t, J = 1.9 Hz, 1 H), 3.81 (s, 3 H), 2.93 (dd, J = 3.3, 15.4 Hz, 1 H), 2.79 (tdd, J = 1.9, 10.7, 15.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 160.0, 150.4, 146.3, 137.9, 130.0, 117.8, 114.7, 111.2, 94.8, 78.6, 55.3, 33.2.
Compound 2d: IR: 1780 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.35-7.25 (m, 1 H), 7.24-7.12 (m, 3 H), 5.40 (dd, J = 3.3, 10.3 Hz, 1 H), 4.85 (app t, J = 2.2 Hz, 1 H), 4.42 (app t, J = 1.8 Hz, 1 H), 2.92 (dd, J = 3.2, 15.0 Hz, 1 H), 2.79 (tdd, J = 1.4, 10.6, 15.4 Hz, 1 H), 2.39 (s, 3 H). 13C NMR 100 MHz, CDCl3): δ = 151.2, 147.1, 139.5, 137.1, 130.7, 129.5, 127.0, 123.4, 95.4, 79.5, 33.9, 22.1.
Compound 2e: IR: 1772 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.77 (app t, J = 1.8 Hz, 1 H), 4.36 (app t, J = 1.4 Hz, 1 H), 4.15 (ddd, J = 2.3, 6.9, 10.2 Hz, 1 H), 2.65 (dd, J = 2.9, 15.0 Hz, 1 H), 2.50 (tdd, J = 1.5, 10.3, 15.0 Hz, 1 H), 2.00 (m, 1 H), 1.85-1.07 (m, 10 H). 13C NMR (100 MHz, CDCl3): δ = 151.7, 147.4, 94.9, 82.6, 41.9, 29.1, 28.6, 28.4, 26.7, 26.3, 26.1.
Compound 2f: IR: 1772 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.79 (t, J = 1.5 Hz, 1 H), 4.44 (m, 1 H), 4.37 (t, J = 1.5 Hz, 1 H), 2.70 (dd, J = 3.3, 15.4 Hz, 1 H), 2.46 (tdd, J = 1.5, 9.5, 15.0 Hz, 1 H), 1.77 (m, 1 H), 1.75-1.38 (m, 3 H), 0.97 (t, J = 7.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 151.4, 147.3, 95.0, 78.3, 37.0, 31.5, 18.5, 14.3.
Compound 2g: IR: 1775 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.78 (t, J = 1.9 Hz, 1 H), 4.37 (t, J = 1.9 Hz, 1 H), 4.13 (ddd, J = 2.9, 6.6, 10.6 Hz, 1 H), 2.66 (dd, J = 3.0, 15.1 Hz, 1 H), 2.48 (tdd, J = 1.5, 10.6, 15.4 Hz, 1 H), 1.93 (m, 1 H), 1.05 (d, J = 7.0 Hz, 3 H), 0.99 (d, J = 7.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 151.6, 147.4, 94.9, 83.2, 32.5, 29.0, 18.2, 18.1.
Compound 2h: IR: 1772 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.77 (dd, J = 0.7, 2.6 Hz, 1 H), 4.39 (dd, J = 1.4, 2.6 Hz, 1 H), 3.90 (dd, J = 4.4, 7.3 Hz, 1 H), 2.68 (m, 1 H), 1.92-1.52 (m, 7 H), 1.21 (d, J = 6.9 Hz, 3 H), 1.45-1.10 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 156.7, 147.3, 93.7, 87.2, 39.8, 32.0, 29.8, 26.6, 26.3, 14.5.
Compound 2i: IR: 1773 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.80 (dd, J = 1.1, 2.6 Hz, 1 H), 4.40 (dd, J = 1.5, 2.6 Hz, 1 H), 4.10 (dt, J = 4.0, 8.1 Hz, 1 H), 2.52 (m, 1 H), 1.75-1.47 (m, 3 H), 1.47-1.20 (m, 9 H), 1.23
(d, J = 7.0 Hz, 3 H), 0.88 (t, J = 7.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 156.6, 147.1, 93.8, 83.3, 34.7, 33.6, 32.4, 29.9, 29.7, 24.8, 23.3, 14.8, 14.3.