References and Notes <A NAME="RD38205ST-1">1 </A>
Present address: Glycoform Limited, Unit 44C, Milton Park, Abingdon, Oxon OX14 4RU,
UK
<A NAME="RD38205ST-2">2 </A>
Elsley DA.
MacLeod D.
Miller JA.
Quayle P.
Davies GM.
Tetrahedron Lett.
1992,
33:
409
<A NAME="RD38205ST-3A">3a </A>
Mead KT.
Brewer BN.
Curr. Org. Chem.
2003,
7:
227
<A NAME="RD38205ST-3B">3b </A>
Brimble MA.
Curr. Org. Chem.
2003,
7:
1461
For recent reviews, see:
<A NAME="RD38205ST-4A">4a </A>
Nicolaou KC.
Bulger PC.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4442
<A NAME="RD38205ST-4B">4b </A>
Echavarren AM.
Angew. Chem. Int. Ed.
2005,
44:
3962
<A NAME="RD38205ST-5">5 </A>
Conway JC.
Quayle P.
Regan AC.
Urch CJ.
Tetrahedron
2005,
61:
11910
<A NAME="RD38205ST-6A">6a </A>
Stork G.
Zhao K.
Tetrahedron Lett.
1989,
30:
2173
<A NAME="RD38205ST-6B">6b </A> For a recent application, see:
Dias LC.
de Oliveira LG.
Vilcachagua JD.
Nigsch F.
J. Org. Chem.
2005,
70:
2225
<A NAME="RD38205ST-7">7 </A>
Abas A.
Beddoes RL.
Conway JC.
Quayle P.
Urch CJ.
Synlett
1995,
1264
<A NAME="RD38205ST-8A">8a </A>
Helliwell M.
Karim S.
Parmee ER.
Thomas EJ.
Org. Biomol. Chem.
2005,
3:
3636 ; and references cited therein
For pertinent reviews, see:
<A NAME="RD38205ST-8B">8b </A>
Ikeda H.
Omura S.
Chem. Rev.
1997,
97:
2591
<A NAME="RD38205ST-8C">8c </A>
Ley SV.
Armstrong A. In
Strategies and Tactics in Organic Synth esis Vol. 3
Lindberg T.
Academic Press;
London:
1991.
p.237
<A NAME="RD38205ST-8D">8d </A>
Davies HG.
Green RH.
Chem. Soc. Rev.
1991,
20:
211
<A NAME="RD38205ST-8E">8e </A>
Davies HG.
Green RH.
Chem. Soc. Rev.
1991,
20:
271
<A NAME="RD38205ST-9">9 </A> For a review, see:
Ferrier RJ.
Zubkov OA.
Org. React.
2003,
62:
569
<A NAME="RD38205ST-10">10 </A> For related rearrangements, see:
Paquette LA.
Kinney MJ.
Dullweber U.
J. Org. Chem.
1997,
62:
1713
For intermolecular etherification processes, see:
<A NAME="RD38205ST-11A">11a </A>
Bolitt V.
Mioskowski C.
Le S.-G.
Falck JR.
J. Org. Chem.
1990,
55:
5812
<A NAME="RD38205ST-11B">11b </A>
Jaunzems J.
Kashin D.
Schönberger A.
Kirschning A.
Eur. J. Org. Chem.
2004,
3435
<A NAME="RD38205ST-11C">11c </A>
Lin H.-C.
Du W.-P.
Chang C.-C.
Lin C.-H.
Tetrahedron Lett.
2005,
46:
5071
<A NAME="RD38205ST-11D">11d </A> For iodo-spiroketalization, see:
Holston EB.
Roush WR.
Org. Lett.
2002,
4:
3719
<A NAME="RD38205ST-12A">12a </A> This intermediate has been prepared previously, see:
Sellès P.
Lett R.
Tetrahedron Lett.
2002,
43:
4621
<A NAME="RD38205ST-12B">12b </A> For a synthesis of racemic 10 , see ref. 5b. Alcohol 14 has been prepared previously, see:
Muñoz DM.
Passey SC.
Simpson TJ.
Willis CL.
Campbell JB.
Rosser R.
Aust. J. Chem.
2004,
57:
645
<A NAME="RD38205ST-13A">13a </A>
Jarosz S.
Zamojski A.
Curr. Org. Chem.
2003,
7:
13
<A NAME="RD38205ST-13B">13b </A>
Somsak L.
Chem. Rev.
2001,
101:
81
<A NAME="RD38205ST-13C">13c </A>
Friesen RW.
Loo RW.
Sturino CF.
Can. J. Chem.
1994,
72:
1262
<A NAME="RD38205ST-13D">13d </A>
Friesen RW.
Sturino CF.
J. Org. Chem.
1990,
55:
2572
<A NAME="RD38205ST-13E">13e </A>
Dubois E.
Beau JM.
Tetrahedron Lett.
1990,
31:
5165
For carbonylative Stille reactions, see:
<A NAME="RD38205ST-13F">13f </A>
Steunenberg P.
Jeanneret V.
Zhu Y.-H.
Vogel P.
Tetrahedron: Asymmetry
2005,
16:
337
<A NAME="RD38205ST-13G">13g </A>
Dubbaka SR.
Steunenburg P.
Vogel P.
Synlett
2004,
1235
<A NAME="RD38205ST-13H">13h </A>
Friesen RW.
Loo RW.
Sturino CF.
Can. J. Chem.
1994,
72:
1262
<A NAME="RD38205ST-13I">13i </A>
Dubois E.
Beau JM.
Tetrahedron Lett.
1990,
31:
5165
<A NAME="RD38205ST-13J">13j </A> For the Pd-catalyzed coupling reactions of glucal-derived indium reagents, see:
Lehmann Y.
Awasthi S.
Minehan T.
Org. Lett.
2003,
5:
2405-2408
For Stille-type cross-coupling reactions of iodoglucals, see:
<A NAME="RD38205ST-13K">13k </A>
Friesen RW.
Loo RW.
J. Org. Chem.
1991,
56:
4821
<A NAME="RD38205ST-13L">13l </A>
Potuzak JS.
Tan DS.
Tetrahedron Lett.
2004,
45:
1797
<A NAME="RD38205ST-14A">14a </A> See ref. 7 and:
Koo B.
McDonald F.
Org. Lett.
2005,
7:
3621
<A NAME="RD38205ST-14B">14b </A>
Dubois E.
Beau JM.
Carbohydr. Res.
1992,
228:
103
<A NAME="RD38205ST-15">15 </A>
Newton RF.
Reynolds DP.
Finch MAW.
Kelly DA.
Roberts SM.
Tetrahedron Lett.
1979,
20:
3981
For reviews, see:
<A NAME="RD38205ST-16A">16a </A>
Negishi E.-i.
Hu Q.
Huang Z.
Qian M.
Wang G.
Aldrichimica Acta
2005,
38:
71
<A NAME="RD38205ST-16B">16b </A>
Negishi E.-i.
Zeng X.
Tan Z.
Mingxing Q.
Hu Q.
Huang Z. In
Metal-Catalyzed Cross-Coupling Reactions
2nd ed., Vol. 2:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
p.815
For the use of Negishi cross-coupling reactions in related contexts, see:
<A NAME="RD38205ST-16C">16c </A>
Boucard V.
Larrieu K.
Lubin-Germain N.
Uziel J.
Auge J.
Synlett
2003,
1834
<A NAME="RD38205ST-16D">16d </A>
Holzapfel CW.
Portwig CM.
Heterocycles
1997,
45:
1433
<A NAME="RD38205ST-16E">16e </A>
Casson S.
Kocienski P.
J. Chem. Soc., Perkin Trans. 1
1994,
1187
<A NAME="RD38205ST-16F">16f </A>
Tius MA.
Gu X.-Q.
Gomez-Galeno J.
J. Am. Chem. Soc.
1990,
112:
8188
<A NAME="RD38205ST-17">17 </A> Confer:
Boeckman RK.
Charette AB.
Asberom T.
Johnston BH.
J. Am. Chem. Soc.
1991,
113:
5337
<A NAME="RD38205ST-18">18 </A>
As indicated by D2 O quenching experiments.
<A NAME="RD38205ST-19">19 </A>
Representative Spectroscopic Data.
Compound 17 : IR (film): νmax = 3031, 2968, 2927, 1661, 1496, 1454, 1399, 1365, 1309, 1245, 1215, 1177, 1097, 1028,
989, 911, 851, 735, 698 cm-1 . 1 H NMR (300 MHz, C6 D6 ): δ = 1.16 (3 H, d, J = 7.5 Hz, Me), 1.64 (1 H, br d dt, J = 18.0, 3.5 Hz, 3-H), 1.75 (1 H, br d, J = 18.0 Hz, 3-H), 1.77 (1 H, t, J = 12.0 Hz, 11ax -H), 2.41 (1 H, dd, J = 12.5 Hz, 11eq -H), 3.84 (1 H, dd, J = 11.0, 2.0 Hz, CH
2
OBn), 3.90 (1 H, t, J = 9.0 Hz, 9-H), 3.95 (1 H, dd, J = 11.0, 5.0 Hz, CH
2
OBn), 4.09-4.18 (1 H, m, 2-H), 4.20-4.26 (1 H, ddd, J = 10.0, 5.0, 2.0 Hz, 8-H), 4.35-4.44 (1 H, m, 10-H), 4.45-5.20 (6 H, m, 3 × CH
2
Ph), 4.69-4.71 (2 H, m, 4-H, 5-H), 7.10-7.50 (15 H, m, Ar). 13 C NMR (75 MHz, C6 D6 ): δ = 21.13, 32.34, 40.62, 63.71, 70.12, 71.50, 72.56, 73.53, 75.08, 78.68, 78.97,
96.19, 127.44, 127.49, 127.54, 127.69, 127.89, 128.01, 128.33, 128.49, 129.94, 129.94,
139.28, 139.64, 139.73. MS (CI): m/z (%) 501 (20) [M + H]+ . HRMS: m/z calcd for C32 H37 O5 : 501.2641. Found: 501.2640. Mixture of 19 and 20 (19 :20 = 1.5:1): IR (film): νmax = 3030, 2918, 1657, 1606, 1579, 1496, 1477, 1454, 1395, 1365, 1259, 1209, 1098, 1001,
910, 736, 696 cm-1 . Compound 19 : 1 H NMR (300 MHz, CHCl3 ): δ = 1.28 (3 H, d, J = 7 Hz, Me), 2.07-2.20 (2 H, m, 2 × 3-H), 3.70 (1 H, d, J = 4.0 Hz, 11eq -H), 3.72-3.90 (4 H, m, 8-H, H-9, CH
2
OBn), 3.92-4.10 (1 H, m, 2-H), 4.44-5.00 (6 H, m, 3 × CH
2
Ph), 4.54 (1 H, dd, J = 10.0, 4.0 Hz, 10-H), 6.00-6.20 (1 H, m, 4-H), 6.68 (1 H, d, J = 10.0 Hz, 5-H), 7.10-7.60 (20 H, m, Ar). Compound 20 : 1 H NMR (300 MHz, CHCl3 ): δ = 1.32 (3 H, d J = 7.0 Hz), 2.07-2.20 (2 H, m, 3-H), 3.42 (1 H, d, J = 11.0 Hz, 11ax -H), 3.72-3.90 (4 H, m, H-8, H-9, CH
2
OBn), 3.92-4.10 (1 H, m, 2-H), 4.19 (1 H, dd J = 11.0, 9.0 Hz, 10-H), 4.44-5.00 (5 H, m, OCH
2
Ph), 5.15 (1 H, d, J = 10.0 Hz, OCH
2
Ph), 5.74 (1 H, d, J = 10.0 Hz, 5-H), 6.00-6.20 (1 H, m, 4-H). 13 C NMR (75 MHz, CHCl3 , mixture of 19 and 20 ): δ = 20.98, 21.01, 31.68, 32.03, 55.33, 64.23, 64.74, 68.95, 69.43, 71.33, 71.82,
72.27, 73.38, 73.48, 74.96, 75.07, 75.94, 76.45, 79.40, 79.92, 83.28, 97.75, 98.56,
126.59, 127.03, 127.38, 127.43, 127.49, 127.62, 127.69, 127.75, 127.90, 127.96, 128.19,
128.25, 128.32, 128.38, 128.45, 128.84, 129.00, 129.27, 129.61, 131.55, 131.75, 132.88,
133.54, 138.30, 138.41, 138.46, 138.62 ppm. MS (CI): m/z = 657 (57) [M + H]+ . HRMS: m/z calcd for C38 H40 O5
80 Se: 656.2041. Found: 656.2050. Compound 21 : IR (film): νmax = 3062, 3031, 2928, 1656, 1579, 1496, 1477, 1454, 1398, 1360, 1321, 1264, 1209, 1112,
1025, 910, 838, 785, 736, 697 cm-1 . 1 H NMR (300 MHz, CHCl3 ): δ = 1.37 (3 H, d, J = 7.5 Hz, Me), 2.10 (1 H, dt, J = 18, 3-H), 2.43 (1 H, ddd, J = 18.0, 5.0, 2.0 Hz, 3-H), 3.55 (1 H, d, J = 12 Hz, 11ax -H), 3.81 (5 H, m, 8-H, 9-H, 10-H, CH
2
OBn), 4.44 (1 H, m, 2-H), 4.56-5.07 (6 H, m, 3 × CH
2
Ph), 6.13 (1 H, d, J = 11.0 Hz, 4-H), 6.32 (1 H, dt, J = 11.0, 5.0 Hz, 5-H), 7.20-7.25 (20 H, m, Ar) ppm. 13 C NMR (75 MHz): δ = 21.71, 30.82, 57.39, 69.43, 69.87, 73.35, 73.42, 74.91, 75.44,
80.12, 83.58, 97.67, 123.47, 126.88, 127.52, 127.60, 127.82, 127.99, 128.15, 128,26,
128.34, 128.48, 128.72, 128.94, 131.13, 131.66, 133.13, 138.16, 138.30, 138.49 ppm.
MS (CI): m/z (%) 657 (32) [M + H]+ . HRMS: m/z calcd for C38 H40 O5
80 Se: 656.2041. Found: 656.2042.
<A NAME="RD38205ST-20">20 </A> See:
Deslongchamps P.
Stereoelectronic Effects in Organic Chemistry
Pergamon;
Oxford:
1983.
Chap. 2.
<A NAME="RD38205ST-21">21 </A>
Confer ref. 22b.
<A NAME="RD38205ST-22A">22a </A>
Jaurand G.
Beau J.-M.
Sinaӱ P.
J. Chem. Soc., Chem. Commun.
1981,
572
<A NAME="RD38205ST-22B">22b </A>
Diez-Martin D.
Grice P.
Kolb HC.
Ley SV.
Madin A.
Tetrahedron Lett.
1990,
31:
3445
<A NAME="RD38205ST-22C">22c </A> For related oxidative spirocyclization reactions, see:
Potuzak JS.
Moilanen SB.
Tan DS.
J. Am Chem. Soc.
2005,
127:
13706
For an in-depth analysis, see:
<A NAME="RD38205ST-23A">23a </A>
Roush WR.
Sebesta DP.
Bennett CE.
Tetrahedron
1997,
53:
8825
<A NAME="RD38205ST-23B">23b </A>
Predojević J.
Vukićević MD.
Wurst K.
Onganania K.-H.
Laus G.
Vukićević RD.
Carbohydr. Res.
2004,
339:
37 ; for structural studies
For other approaches to the synthesis of ‘contra-thermodynamic’ spiroketals, see:
<A NAME="RD38205ST-24A">24a </A>
Doubskӱ Zedník J.
Vašíčková S.
Koutek B.
Tetrahedron Lett.
2005,
46:
7923
<A NAME="RD38205ST-24B">24b </A>
Paterson I.
Coster MJ.
Chen DY.-K.
Gibson KR.
Wallace DJ.
Org. Biomol. Chem.
2005,
2410
<A NAME="RD38205ST-24C">24c </A>
Takaoka LR.
Buckmelter AJ.
LaCruz TE.
Rychnovsky SD.
J. Am. Chem. Soc.
2005,
127:
528
<A NAME="RD38205ST-24D">24d </A>
Chen J.
Fletcher MT.
Kitching W.
Tetrahedron: Asymmetry
1995,
6:
967
<A NAME="RD38205ST-25A">25a </A>
Milne JE.
Jarowicki K.
Kocienski PJ.
Alonso J.
Chem. Commun.
2002,
426
<A NAME="RD38205ST-25B">25b </A>
Milne JE.
Kocienski PJ.
Synthesis
2003,
584
<A NAME="RD38205ST-25C">25c </A>
This route promises to provide access to substrates such as 3 with greater efficiency than observed using Beau’s methodology. Beau’s route (that
used in this study, see ref. 14b) requires recycling of i in order to achieve the throughput required for preparative-scale reactions (Scheme
6).
Scheme 6