Abstract
A high-yielding synthesis of 1,2,3-triazole with cheaply available Cu(OAc)2 without any additional reducing agents is explored, which provides an exclusive
1,4-regioselectivity at ambient conditions in an environmentally benign solvent -
water.
Key words
Cu(II) catalyst - regioselective - 1,2,3-triazole - water
References and Notes
<A NAME="RD31805ST-1">1 </A>
Sheldon RA.
Green Chem.
2005,
7:
267
<A NAME="RD31805ST-2">2 </A>
Cornils B.
Herrmann WA.
Aqueous Phase Organometallic Catalysis - Concepts and Applications
Wiley-VCH;
Weinheim:
1998.
<A NAME="RD31805ST-3A">3a </A>
Leitner W.
Top. Curr. Chem.
1999,
206:
107
<A NAME="RD31805ST-3B">3b </A>
Leitner W.
Acc. Chem. Res.
2002,
35:
746
<A NAME="RD31805ST-3C">3c </A>
Beckman EJ.
J. Supercrit. Fluids
2004,
28:
121
<A NAME="RD31805ST-4A">4a </A>
Sheldon RA.
Chem. Commun.
2001,
2399
<A NAME="RD31805ST-4B">4b </A>
Wasserscheid P.
Keim W.
Angew. Chem. Int. Ed.
2000,
39:
3772
<A NAME="RD31805ST-4C">4c </A>
Dupont J.
de Souza RF.
Suarez PAZ.
Chem. Rev.
2002,
102:
3667
<A NAME="RD31805ST-4D">4d </A>
Song CE.
Chem. Commun.
2004,
1033
<A NAME="RD31805ST-5A">5a </A>
Haimov A.
Neumann R.
Chem. Commun.
2002,
876
<A NAME="RD31805ST-5B">5b </A>
Alper H.
Januszkiewicz K.
Smith DJH.
Tetrahedron Lett.
1985,
26:
2263
<A NAME="RD31805ST-5C">5c </A>
Chanrasekhar S.
Narsihmulu C.
Sultana SS.
Reddy NR.
Org. Lett.
2002,
4:
4399
<A NAME="RD31805ST-6">6 </A>
Dobbs AP.
Rimberley MR.
J. Fluorine Chem.
2002,
118:
3
<A NAME="RD31805ST-7">7 </A>
Li CJ.
Chem. Rev.
2005,
105:
3095
<A NAME="RD31805ST-8">8 </A>
Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry
Wiley;
New York:
1984.
p.1-176
<A NAME="RD31805ST-9A">9a </A>
Fan WQ.
Katritzky AR. In
Comprehensive Heterocyclic Chemistry II
Vol. 4:
Katritzky AR.
Rees CW.
Scriven EFV.
Elsevier Science;
Oxford:
1996.
p.1-126
<A NAME="RD31805ST-9B">9b </A>
Holla BS.
Mahalinga M.
Karthikeyan MS.
Poojary B.
Akberali PM.
Kumari NS.
Eur. J. Med. Chem.
2005,
40:
1173
<A NAME="RD31805ST-9C">9c </A>
Elmorsi MA.
Hassanein AM.
Corros. Sci.
1999,
41:
2337
<A NAME="RD31805ST-9D">9d </A>
Kim DK.
Kim J.
Park HJ.
Bioorg. Med. Chem. Lett.
2004,
14:
2401
<A NAME="RD31805ST-10">10 </A>
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless KB.
Angew. Chem. Int. Ed.
2002,
41:
2596
<A NAME="RD31805ST-11">11 </A>
Kolb HC.
Sharpless KB.
Drug Discov. Today
2003,
8:
1128
<A NAME="RD31805ST-12">12 </A>
Himo F.
Lovell T.
Hilgraf R.
Rostovtsev VV.
Noodleman L.
Sharpless KB.
Fokin VV.
J. Am. Chem. Soc.
2005,
127:
210
<A NAME="RD31805ST-13">13 </A>
Yamamoto Y.
Hayashi H.
Saigoku T.
Nishiyama H.
J. Am. Chem. Soc.
2005,
127:
10804
<A NAME="RD31805ST-14">14 </A>
Ye MC.
Zhou J.
Huang ZZ.
Tang Y.
Chem. Commun.
2003,
2554
<A NAME="RD31805ST-15">15 </A>
Park SB.
Alper H.
Chem. Commun.
2005,
1315
<A NAME="RD31805ST-16">16 </A>
Typical Procedure for the Synthesis of 1,2,3-Triazoles
To the stirred solution of alkyne (1.2 mmol) and copper catalyst (20 mol%) in H2 O (3 mL), was added alkyl azide (1.0 mmol) in one portion at r.t. After 20 h of stirring,
the precipitated product was extracted with EtOAc (3 × 5 mL) and the organic extract
was dried. The crude product was subjected to column chromatography to yield the desired product.
The products were characterized by 1 H NMR. Compound 1a : 1 H NMR (CDCl3 ): δ = 5.55 (s, 2 H), 7.25-7.37 (m, 8 H), 7.58 (s, 1 H), 7.75 (d, 2 H, J = 8.30 Hz). Compound 2a : 1 H NMR (CDCl3 ): δ = 2.36 (s, 3 H), 5.55 (s, 2 H), 7.14-7.37 (m, 7 H), 7.55 (s, 1 H), 7.64 (d, 2
H, J = 8.3 Hz). Compound 3a : 1 H NMR (CDCl3 ): δ = 3.83 (s, 3 H), 5.52 (s, 2 H), 6.69 (m, 1 H), 7.19-7.38 (m, 8 H), 7.58 (s, 1
H). Compound 4a : 1 H NMR (CDCl3 ): δ = 3.12 (br, 1 H), 4.69 (s, 2 H), 5.48 (s, 2 H), 7.18-7.38 (m, 6 H). Compound
5a : 1 H NMR (CDCl3 ): δ = 1.52 (s, 6 H), 4.20 (br, 1 H), 5.39 (s, 2 H), 7.21-7.36 (m, 6 H). Compound
6a : 1 H NMR (CDCl3 ): δ = 1.90 (s, 3 H), 2.93 (br, 1 H), 5.43 (s, 2 H), 7.15-7.42 (m, 11 H).