References and Notes
<A NAME="RG09206ST-1A">1a</A>
Renner MK.
Shen Y.-C.
Cheng X.-C.
Jensen PR.
Frankmoelle W.
Kauffmann CA.
Fenical W.
Lobkovsky E.
Clardy J.
J. Am. Chem. Soc.
1999,
121:
11273
<A NAME="RG09206ST-1B">1b</A>
Fenical WH,
Jacobs RS, and
Jensen PR. inventors; U.S. Patent 5,444,043.
<A NAME="RG09206ST-1C">1c</A>
Fenical WH,
Jacobs RS, and
Jensen PR. inventors; U.S. Patent 5,593,960.
<A NAME="RG09206ST-2">2</A>
Pazoles CJ, and
Siegel SA. inventors; U.S. Patent 5,759,995.
<A NAME="RG09206ST-3">3</A>
Waters B.
Saxena G.
Wanggui Y.
Kau D.
Wrigley S.
Stokes R.
Davies J.
J. Antibiot.
2002,
55:
407
<A NAME="RG09206ST-4">4</A>
Sugiyama H.
Shioiri T.
Yokokawa F.
Tetrahedron Lett.
2002,
43:
3489
<A NAME="RG09206ST-5">5</A>
Tarver JE.
Joullié MM.
J. Org. Chem.
2004,
69:
815
<A NAME="RG09206ST-6">6</A>
Tarver JE.
Terranova KM.
Joullié MM.
Tetrahedron
2004,
60:
10277
<A NAME="RG09206ST-7">7</A>
Hajra S.
Karmakar A.
Tetrahedron Lett.
2004,
45:
3185
<A NAME="RG09206ST-8">8</A>
Hansen DB.
Lewis AS.
Gavalas SJ.
Joullié MM.
Tetrahedron: Asymmetry
2006,
17:
15
<A NAME="RG09206ST-9">9</A>
Della Sala G.
Capozzo D.
Izzo I.
Giordano A.
Iommazzo A.
Spinella A.
Tetrahedron Lett.
2002,
43:
8839
<A NAME="RG09206ST-10">10</A>
Pirrung MC.
Li Z.
Park K.
Zhu J.
J. Org. Chem.
2002,
67:
7919
<A NAME="RG09206ST-11">11</A>
Franck WC.
Kim YC.
Heck RF.
J. Org. Chem.
1978,
43:
2947
<A NAME="RG09206ST-12">12</A>
Harrington PJ.
Hegedus LS.
J. Org. Chem.
1984,
49:
2657
<A NAME="RG09206ST-13A">13a</A>
Ahaidar A.
Fernández D.
Danelón G.
Cuevas C.
Manzanares I.
Albericio F.
Joule JA.
Álvarez M.
J. Org. Chem.
2003,
68:
10020
<A NAME="RG09206ST-13B">13b</A>
Ahaidar A.
Fernández D.
Pérez O.
Danelón G.
Cuevas C.
Manzanares I.
Albericio F.
Joule JA.
Álvarez M.
Tetrahedron Lett.
2003,
44:
6191
<A NAME="RG09206ST-13C">13c</A>
Álvarez M.
Fernández D.
Joule JA.
Tetrahedron Lett.
2001,
42:
315
<A NAME="RG09206ST-14">14</A>
Sakamoto T.
Kondo Y.
Yasuhara A.
Yamanaka H.
Tetrahedron
1991,
47:
1877
<A NAME="RG09206ST-15">15</A>
Moritani I.
Fujiwara Y.
Tetrahedron Lett.
1967,
12:
1119
<A NAME="RG09206ST-16">16</A>
Jia C.
Piao D.
Oyamada J.
Lu W.
Kitamura T.
Fujiwara Y.
Science
1992,
287:
1992
<A NAME="RG09206ST-17">17</A>
Jia C.
Lu W.
Kitamura T.
Fujiwara Y.
Org. Lett.
1999,
1:
2097
<A NAME="RG09206ST-18">18</A>
Grimster NP.
Gauntlett C.
Godfrey CRA.
Gaunt MJ.
Angew. Chem. Int. Ed.
2005,
44:
3125
<A NAME="RG09206ST-19">19</A>
Capito E.
Brown JM.
Ricci A.
Chem. Commun.
2005,
1854
<A NAME="RG09206ST-20">20</A>
Procedure for Pd(OAc)
2
-Catalyzed Oxidative Heck Coupling (Table 2, Entry 4).
A mixture of indole 13 (90 mg, 0.35 mmol), Pd(OAc)2 (36 mg, 0.16 mmol), Cu(OAc)2 (0.318 g, 1.75 mmol) and ethyl acrylate (0.11 mL, 1.0 mmol) in dry DMF-DMSO 9:1 (10
mL) was deoxygenated and heated at 80 °C in a capped Schlenk tube. After 24 h, the
reaction vessel was cooled to r.t. and CH2Cl2 (20 mL) was added. The organic phase was washed with H2O (3 × 30 mL) and the resulting aqueous phases were again extracted with CH2Cl2 (20 mL). The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo. Purification by flash chromatography (gradient
elution with PE-Et2O mixtures from 100:0 to 1:1) afforded product 12 (87 mg, 70% yield) as a yellow oil and an additional product 19 (21 mg, 23% yield).
<A NAME="RG09206ST-21">21</A>
Compound 12: [α]D
22 +12.3 (c 1.8, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.92 (1 H, m, indole H-4 or H-7), 7.90 (1 H, d, J = 16.0 Hz, β-acrylic CH), 7.70 (1 H, m, indole H-4 or H-7), 7.62 (1 H, s, indole H-2), 7.20-7.24 (2 H overlapped,
m, indole H-5, H-6), 6.41 (1 H, d, J = 16.0 Hz, α-acrylic CH), 4.84 (1 H, dd, J = 7.0, 6.1 Hz, acetonide CH), 4.27 (2 H, q, J = 7.1 Hz, acrylate CH
2), 3.86 (1 H, dd, J = 8.9, 7.0 Hz, acetonide CH
2), 3.60 (1 H, dd, J = 8.9, 6.1 Hz, acetonide CH
2), 1.79 (3 H, s, CH
3), 1.72 (3 H, s, CH
3), 1.41 (3 H, m, acetonide CH
3), 1.35 (3 H, t, J = 7.1 Hz, acrylate CH
3), 1.34 (3 H, m, acetonide CH
3). 13C NMR (100 MHz, CDCl3): δ = 168.3, 138.0, 136.6, 130.8, 127.7, 122.3, 121.1, 120.7, 114.2, 112.7, 111.6,
110.3, 79.1, 65.3, 61.0, 60.0, 25.9, 24.7, 24.2, 23.5, 14.4. MS (EI, 70 eV, 250 °C):
m/z = 357 [M+], 256. Anal. Calcd for C21H27NO4 (%): C, 70.56; H, 7.61; N, 3.92. Found: C, 70.27; H, 7.43; N, 3.92.
<A NAME="RG09206ST-22">22</A>
Compound 19: 1H NMR (400 MHz, CDCl3): δ = 7.77 (1 H, m, indole H-4 or H-7), 7.76 (1 H, m, indole H-4 or H-7), 7.53 (1
H, s, indole H-2), 7.21 (1 H, m, indole H-5 or H-6), 7.13 (1 H, m, indole H-5 or H-6),
4.95 (1 H, dd, J = 7.0, 6.0 Hz, acetonide CH), 3.83 (1 H, dd, J = 8.9, 7.0 Hz, acetonide CH
2), 3.69 (1 H, dd, J = 8.9, 6.0 Hz, acetonide CH
2), 1.87 (3 H, s, CH
3), 1.79 (3 H, s, CH
3), 1.45 (3 H, m, acetonide CH
3), 1.37 (3 H, m, acetonide CH
3). 13C NMR (100 MHz, CDCl3) δ = 135.7, 129.1, 123.6, 121.3, 120.5, 119.2, 113.6, 110.1, 109.0, 79.5, 65.4, 60.3,
26.0, 25.1, 24.8, 23.2. MS (ES): m/z = 517 [M + H]+. Anal. Calcd for C32H40N2O4 (%): C, 74.39; H, 7.80; N, 5.42. Found: C, 74.37; H, 7.77; N, 5.39.
<A NAME="RG09206ST-23">23</A>
Procedure for PdCl
2
-Catalyzed Oxidative Heck Coupling (Table 2, Entry 5).
A mixture of indole 13 (78 mg, 0.30 mmol), PdCl2 (15 mg, 0.085 mmol), Cu(OAc)2 (0.168 g, 0.92 mmol) and ethyl acrylate (0.10 mL, 0.92 mmol) in dry MeCN (3.5 mL)
was deoxygenated and heated at 40 °C in a capped Schlenk tube. After 24 h, the reaction
vessel was cooled to r.t. Brine was added (25 mL) and the mixture was extracted with
EtOAc (3 × 25 mL). The combined organic phases were dried over MgSO4, filtered and concentrated in vacuo. Purification by flash chromatography (gradient
elution with PE-Et2O mixtures from 8:2 to 4:6) afforded product 12 (92 mg, 86% yield).