Subscribe to RSS
DOI: 10.1055/s-2006-941571
The [2+2] Photocycloaddition of Uracil Derivatives with Ethylene as a General Route to cis-Cyclobutane β-Amino Acids
Publication History
Publication Date:
22 May 2006 (online)

Abstract
A three-step procedure, based on the [2+2]-photochemical reaction of uracils with ethylene followed by controlled degradation of the heterocyclic ring, has been developed for the synthesis of a range of C1- and C2-substituted cis-cyclobutane β-amino acids, in good overall yield.
Key words
β-amino acids - cyclobutane - uracils - [2+2]-photocycloaddition - substituent effects
- 1a 
             
            Seebach D.Matthews JL. Chem. Commun. 1997, 2015
- 1b 
             
            Seebach D.Overhand M.Kühnle FNM.Martinoni B.Oberer L.Hommel U.Widmer H. Helv. Chim. Acta 1996, 79: 913
- 2 
             
            Appella DH.Christianson LA.Karle IL.Powel DR.Gellman SH. J. Am. Chem. Soc. 1996, 118: 13071
- 3a 
             
            Cheng RP.Gellman SH.DeGrado WF. Chem. Rev. 2001, 101: 3219
- 3b 
             
            Abele S.Seebach D. Eur. J. Org. Chem. 2000, 1
- 3c 
             
            Steer DL.Lew RA.Perlmutter P.Smith AI.Aguilar M.-I. Curr. Med. Chem. 2002, 9: 811
- 3d 
             
            Seebach D.Beck AK.Bierbaume DJ. Chem. Biodiversity 2004, 1: 1111
- For leading references, see:
- 4a 
             
            Fülöp F. Chem. Rev. 2001, 101: 2181
- 4b 
             
            North M. J. Peptide Sci. 2000, 6: 301
- 4c 
             
            Kuhl A.Hahn MG.Dumić M.Mittendorf J. Amino Acids 2005, 29: 89
- 4d 
             
            Gnad F.Reiser O. Chem. Rev. 2003, 103: 1603
- 5a 
             
            Izquierdo S.Rùa F.Sbai A.Parella T.Alvarez-Larena A.Branchadell V.Ortuño RM. J. Org. Chem. 2005, 70: 7963
- 5b 
             
            Izquierdo S.Martín-Vilà M.Moglioni AG.Branchadell V.Ortuño RM. Tetrahedron: Asymmetry 2002, 13: 2403
- 5c 
             
            Martín-Vilà M.Muray E.Aguado GP.Alvarez-Larena A.Branchadell V.Minguillón C.Giralt E.Ortuño RM. Tetrahedron: Asymmetry 2000, 11: 3569
- Different synthetic approaches have been outlined:
- 6a 
             
            Ortuño RM.Moglioni AG.Moltrasio GY. Curr. Org. Chem. 2005, 9: 237
- 6b 
             
            Bolm C.Schiffers I.Atodiresei I.Hackenberger CPR. Tetrahedron: Asymmetry 2003, 14: 3455
- 6c 
             
            Kennewell PD.Matharu SS.Taylor JB.Westwood R.Sammes PG. J. Chem. Soc., Perkin. Trans. 1 1982, 2563
- 6d 
             
            Brannock KC.Bell A.Burpitt RD.Kelly CA. J. Org. Chem. 1964, 29: 801
- 7a 
             
            Mittendorf J.Kunisch F.Matzke M.Militzer H.-C.Schmidt A.Schönfeld W. Bioorg. Med. Chem. Lett. 2003, 13: 433
- 7b 
             
            Mitsudo T.-A.Zhang S.-W.Satake N.Kondo T.Watanabe Y. Tetrahedron Lett. 1992, 33: 5533
- 7c 
             
            Stoermer R.Schenk F. Chem. Ber. 1928, 61: 2318
- 8 
             
            Yuan P.Driscoll MR.Raymond SJ.Hansen DE.Blatchly RA. Tetrahedron Lett. 1994, 35: 6195
- 9 Recently, an elegant intramolecular [2+2]-photocyclo-addition approach was described
            for the preparation of constrained bicyclic β-amino acid derivatives:  
            Basler B.Schuster O.Bach T. J. Org. Chem. 2005, 70: 9798
- 10 
             
            Aitken DJ.Gauzy C.Pereira E. Tetrahedron Lett. 2002, 43: 6177
- Ethylene is a convenient partner for intermolecular [2+2] photocycloadditions with enone-type reagents; for illustrative recent examples, see:
- 11a 
             
            Gu X.Xian M.Roy-Faure S.Bolte J.Aitken DJ.Gefflaut T. Tetrahedron Lett. 2006, 47: 193
- 11b 
             
            Furutani A.Katayama K.Uesima Y.Ogura M.Tobe Y.Kurosawa H.Tsutsumi K.Morimoto T.Kakiuchi K. Chirality 2006, 18: 217
- 11c 
             
            Gauzy C.Pereira E.Faure S.Aitken DJ. Tetrahedron Lett. 2004, 45: 7095
- 11d 
             
            Piers E.Orellana A. Synthesis 2001, 2138
- 11e 
             
            de March P.Figueredo M.Font J.Raya J. Org. Lett. 2000, 2: 163
- 11f 
             
            Tsujishima H.Nakatani K.Shimamoto K.Shigeri Y.Yumoto N.Ohfune Y. Tetrahedron Lett. 1998, 39: 1193
- 12a 
             
            Wagner PJ.Bucheck DJ. J. Am. Chem. Soc. 1970, 92: 181
- 12b 
             
            Khattak MN.Wang SY. Tetrahedron 1972, 28: 945
- 12c 
             
            Birnbaum GI.Dunston JM.Szabo AG. Tetrahedron Lett. 1971, 12: 947
- 12d 
             
            Shim SC.Lee SH. Photochem. Photobiol. 1979, 29: 1035
- 13a 
             
            Wexler AJ.Balchunis RJ.Swenton JS. J. Org. Chem. 1984, 49: 2733
- 13b 
             
            Wexler AJ.Hyatt JA.Raynolds PW.Cottrell C.Swenton JS. J. Am. Chem. Soc. 1978, 100: 512
- 13c 
             
            Wexler AJ.Swenton JS. J. Am. Chem. Soc. 1976, 98: 1602
- 14a 
             
            Li SS.Sun XL.Ogura H.Konda Y.Sasaki T.Toda Y.Takayanagi H.Harigaya Y. Chem. Pharm. Bull. 1995, 43: 144
- 14b 
             
            Ishikawa I.Itoh T.Takayanagi H.Oshima J.-i.Kawahara N.Mizuno Y.Ogura H. Chem. Pharm. Bull. 1991, 39: 1922
- 15 
             
            Maleski R.Morrison H. Mol. Photochem. 1972, 4: 507
- 16 
             
            Aoyama H.Hatori H. Tetrahedron 1990, 46: 3781
- 18 
             
            Fang W.-P.Cheng Y.-T.Cheng Y.-R.Cherng Y.-J. Tetrahedron 2005, 61: 3107
- 19 
             
            Harnden MR.Hurst DT. Aust. J. Chem. 1990, 43: 47
- 20 
             
            Goto S.Yamanaka A.Kagara K.Yazawa H. Chem. Express 1988, 3: 211
- 22 
             
            Kunieda T.Witkop B. J. Am. Chem. Soc. 1971, 93: 3493
- 23a 
             
            Ingold CK.Sako S.Thorpe JF. J. Chem. Soc. Trans. 1922, 121: 1177
- 23b 
             
            Garcia MJ.Azerad R. Tetrahedron: Asymmetry 1997, 8: 85
- 24 
             
            Rachina V.Blagoeva I. Synthesis 1982, 967
- Both δ-keto acids were identified by comparison of 1H NMR and 13C NMR data with the literature. See:
- 25a For 5-oxo-hexanoic acid (6m):  
            Griesbaum K.Miclaus V.Jung IC.Quinkert R.-O. Eur. J. Org. Chem. 1998, 627
- 25b For 5-oxo-5-phenylpentanoic acid (6n):  
            Hon Y.-S.Lin S.-W.Lu L.Chen Y.-J. Tetrahedron 1995, 51: 5019
- 26 
             
            Aitken DJ.Gauzy C.Pereira E. Tetrahedron Lett. 2004, 45: 2359
References and Notes
Compound 1c was obtained from 5-iodouracil by Suzuki reaction with phenylboronic acid.
21Compound 1r was obtained by esterification of orotic acid in excess n-hexanol (as solvent) in the presence of anhydrous HCl.
27
         Representative Procedure for Photocycloaddition.
            Compound 1j (0.250 g, 1.76 mmol) was introduced into a cylindrical water-cooled reactor containing
         a 1:1 mixture of acetone-H2O (160 mL), which was vented under a fume hood. The mixture was stirred at r.t. and
         degassed with argon for 30 min, then sat. with ethylene for 30 min. Then, whilst ethylene
         bubbling continued, the mixture was irradiated with a 400 W medium-pressure mercury
         lamp fitted with a Pyrex filter for 4 h. The solution was evaporated and the solid
         residue was washed with cyclohexane then acetone. The cyclobutane adduct 2j was obtained as a white solid in 86% yield (0.257 g, 1.51 mmol). Mp 146-148 °C. 1H NMR (400 MHz, DMSO-d
         6): δ = 1.78-1.88 (m, 3 H), 2.06-2.13 (m, 1 H), 3.43 (dd, J = 10.8, 5.3 Hz, 1 H), 3.60 (dd, J = 10.8, 6.0 Hz, 1 H), 3.79 (td, J = 7.1, 4.2 Hz, 1 H), 5.08 (br t, J = 5.4 Hz, 1 H), 7.69 (br s, 1 H), 10.03 (br s, 1 H) ppm. 13C NMR (100 MHz, DMSO-d
         6): δ = 22.8, 27.5, 46.9, 48.8, 63.9, 152.4, 174.7 ppm. MS (ES+): m/z = 193 [MNa]+. HRMS (ES+): m/z calcd for C7H10N2O3Na: 193.0589; found: 193.0597.
         Representative Procedure for Heterocyclic Ring-Opening.
            Compound 2j (0.245 g, 1.44 mmol) was dissolved in 0.5 M NaOH solution (17.6 mL) and stirred overnight
         at r.t. Cation exchange resin (Bio-Rad AG 50W-X8, H+, 20-50 mesh) was then added until pH was about 4. Filtration and then evaporation
         of H2O left the desired compound 3j as a white paste in 87% yield (0.236 g, 1.25 mmol). 1H NMR (400 MHz, DMSO-d
         6): δ = 1.62-1.74 (m, 1 H), 1.85-1.98 (m, 2 H), 2.04-2.15 (m, 1 H), 3.49 (d, J = 10.8 Hz, 1 H), 3.61 (d, J = 10.8 Hz, 1 H), 4.13 (q, J = 8.9 Hz, 1 H), 4.80 (br s, 1 H), 5.56 (s, 2 H), 6.16 (d, J = 8.9 Hz, 1 H), 12.25 (br s, 1 H) ppm. 13C NMR (100 MHz, DMSO-d
         6): δ = 20.5, 25.6, 47.5, 57.6, 64.6, 157.8, 174.7 ppm. MS (ES+): m/z = 189 [MH]+, 211 [MNa]+. HRMS (ES+): m/z calcd for C7H12N2O4Na: 211.0695; found: 211.0691.
         Representative Procedure for Diazotization.
            Compound 3j (0.180 g, 0.96 mmol) was dissolved in 3.5 M HCl solution (22 mL). Then, 1 equiv of
         NaNO2 (0.066 g; 0.96 mmol) was added and the mixture was stirred overnight at r.t. The
         solution was deposited on a cation-exchange column (Dowex 5 × 8 W, H+, 50-100 mesh). The column was washed with H2O until the eluent was neutral, then the amino acid was eluted with 1 M NH4OH. Pure product 4j was recovered after evaporation of appropriate fractions as a white solid in 70%
         yield (0.097 g, 0.67 mmol). Mp 91-94 °C. 1H NMR (400 MHz, D2O): δ = 1.77-1.89 (m, 1 H), 1.92-2.18 (m, 2 H), 2.13-2.25 (m, 1 H), 3.55 (d, J = 11.4 Hz, 1 H), 3.72 (d, J = 11.4 Hz, 1 H), 3.68-3.72 (m, 1 H) ppm. 13C NMR (100 MHz, D2O): δ = 22.5, 23.3, 47.9, 52.7, 65.9, 180.7 ppm. MS (ES+): m/z = 146 [MH]+, 168 [MNa]+. HRMS (ES+): m/z calcd for C6H12NO3: 146.0817; found: 146.0822.
 
    