Semin Reprod Med 2006; 24(3): 134-141
DOI: 10.1055/s-2006-944419
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Environmental Contaminants, Fertility, and Multioocytic Follicles: A Lesson from Wildlife?

Louis J. Guillette1  Jr. , Brandon C. Moore1
  • 1Department of Zoology, University of Florida, Gainesville, Florida
Further Information

Publication History

Publication Date:
28 June 2006 (online)

ABSTRACT

The overall contribution of environmental exposures to infertility is unknown, but a growing scientific database suggests that exposure to various environmental factors, both in utero and neonatally, could dramatically affect adult fertility. Studies of various contaminant-exposed wildlife populations suggest that multiple mechanisms contribute to changes in gonadal development, maturation of germ cells, fertilization, and pregnancy; specifically, the endocrine processes supporting these events. Although great debate and extensive research has occurred during the last decade surrounding fertility, fecundity, and semen quality, much less work has focused on environmental alterations in oocyte development and maturation. Exposure of the developing ovary to estrogens, whether of pharmaceutical (e.g., diethylstilbesterol) or environmental (e.g., phytoestrogens, pesticides with estrogenic action) origin, can disrupt early oogenesis and folliculogenesis leading to a pathology termed the multioocytic follicle (polyovular follicle), which in rodents reduces fertilization and embryonic survival rates. The mechanism underlying this pathology is hypothesized to involve a disruption in the gonadotropin-estrogen-inhibin/activin signaling pathway. Given the conserved nature of vertebrate oogenesis and folliculogenesis, we suggest that perturbations of these phenomena in humans, caused by environmental contaminant exposure, could lead to altered fertility, as has been reported in wildlife and laboratory rodent models.

REFERENCES

  • 1 National Institute for Occupational Safety and Health .NORA: National Occupational Research Agenda. Fertility and Pregnancy Abnormalities: Additional information. Available at: http://www2a.cdc.gov/nora/NaddinfoPreg.html Accessed May 30, 2006
  • 2 Sharara F I, Seifer D B, Flaws J A. Environmental toxicants and female reproduction.  Fertil Steril. 1998;  70 613-622
  • 3 Tyler C R, Jobling S, Sumpter J P. Endocrine disruption in wildlife: a critical review of the evidence.  Crit Rev Toxicol. 1998;  28 319-361
  • 4 Crain D A, Guillette Jr L J. Endocrine-disrupting contaminants and reproduction in vertebrate wildlife.  Rev Toxicol. 1997;  1 47-70
  • 5 Jobling S, Tyler C R. Endocrine disruption in wild freshwater fish.  Pure Appl Chem. 2003;  75 2219-2234
  • 6 Swan S H, Elkin E P, Fenster L. Have sperm densities declined? A reanalysis of global trend data.  Environ Health Perspect. 1997;  105 1228-1232
  • 7 Swan S H, Brazil C, Drobnis E Z Study for Future Families Research Group et al. Geographic differences in semen quality of fertile U.S. males.  Environ Health Perspect. 2003;  111 414-420
  • 8 Skakkebaek N E, Rajpert-De Meyts E, Main K. Testicular dysgenesis syndrome: An increasingly common developmental disorder with environmental aspects.  Hum Reprod. 2001;  16 972-978
  • 9 Edwards T M, Moore B C, Guillette Jr L J. Reproductive dysgenesis in wildlife-a comparative view.  Int J Androl. 2006;  29 109-120
  • 10 Iguchi T, Fukazawa Y, Uesugi Y, Takasugi N. Polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol in vivo and in vitro.  Biol Reprod. 1990;  43 478-484
  • 11 Suzuki A, Sugihara A, Uchida K et al.. Developmental effects of perinatal exposure to bisphenol-a and diethylstilbestrol on reproductive organs in female mice.  Reprod Toxicol. 2002;  16 107-116
  • 12 Amer F I, Shahin M. The post-hatching development of the gonads in the fowl, Gallus domesticus .  Ann Zool. 1975;  11 1-24
  • 13 Muretto P, Chilosi M, Rabitti C, Tommasoni S, Colato C. Biovularity and “coalescence of primary follicles” in ovaries with mature teratomas.  Int J Surg Pathol. 2001;  9 121-125
  • 14 Iguchi T. Cellular effects of early exposure to sex hormones and antihormones.  Int Rev Cytol. 1992;  139 1-57
  • 15 McMullen M L, Cho B N, Yates C J, Mayo K E. Gonadal pathologies in transgenic mice expressing the rat inhibin alpha-subunit.  Endocrinology. 2001;  142 5005-5014
  • 16 Guillette Jr L J, Gross T S, Masson G R, Matter J M, Percival H F, Woodward A R. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida.  Environ Health Perspect. 1994;  102 680-688
  • 17 Masson G R. Environmental influences on reproductive potential, clutch viability and embryonic mortality of the American alligator in Florida [dissertation]. Gainesville, FL; University of Florida 1995
  • 18 Rotstein D S, Schoeb T R, Davis L M, Glenn T C, Arnold B S, Gross T S. Detection by microsatellite analysis of early embryonic mortality in an alligator population in Florida.  J Wildl Dis. 2002;  38 160-165
  • 19 Woodward A R, Jennings M L, Percival H F, Moore C T. Low clutch viability of American alligators on Lake Apopka.  Fl Sci. 1993;  56 52-63
  • 20 Heinz G H, Percival H F, Jennings M L. Contaminants in American alligator eggs from Lake Apopka, Lake Griffin and Lake Okeechobee, Florida.  Environ Monit Assess. 1991;  16 277-285
  • 21 Pepling M E, de Cuevas M, Spradling A C. Germ line cysts: a conserved phase of germ cell development?.  Trends Cell Biol. 1999;  9 257-262
  • 22 Matova N, Cooley L. Comparative aspects of animal oogenesis.  Dev Biol. 2001;  231 291-320
  • 23 Gondos B, Zamboni L. Ovarian development-functional importance of germ cell interconnections.  Fertil Steril. 1969;  20 176-189
  • 24 Ukeshima A, Fujimoto T. A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick.  Anat Rec. 1991;  230 378-386
  • 25 Weakley B S. Light and electron microscopy of developing germ cells and follicle cells in ovary of golden hamster-24 hours before birth to 8 days post partum.  J Anat. 1967;  101 435-459
  • 26 Pepling M E, Spradling A C. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles.  Dev Biol. 2001;  234 339-351
  • 27 da Silva S JM, Bayne R AL, Cambray N, Hartley P S, McNeilly A S, Anderson R A. Expression of activin subunits and receptors in the developing human ovary: Activin A promotes germ cell survival and proliferation before primordial follicle formation.  Dev Biol. 2004;  266 334-345
  • 28 Pangas S A, Woodruff T K. Activin signal transduction pathways.  Trends Endocrinol Metab. 2000;  11 309-314
  • 29 Woodruff T K. Editorial: hope, hypothesis, and the inhibin receptor. Does specific inhibin binding suggest there is a specific inhibin receptor?.  Endocrinology. 1999;  140 3-5
  • 30 Martens J W, de Winter J P, Toimmerman M A et al.. Inhibin interferes with activin signalling at the level of the activin receptor complex in Chinese hamster ovary cells.  Endocrinology. 1997;  138 2928-2936
  • 31 Lewis K A, Gray P C, Blount A L et al.. Betaglycan binds inhibin and can mediate functional antagonism of activin signaling.  Nature. 2000;  404 411-414
  • 32 Tuuri T, Eramaa M, VanSchaik R HN, Ritvos O. Differential regulation of inhibin/activin alpha-and beta (A)-subunit and follistatin mRNAs by cyclic AMP and phorbol ester in cultured human granulosa-luteal cells.  Mol Cell Endocrinol. 1996;  121 1-10
  • 33 Welt C K, Schneyer A L. Differential regulation of inhibin B and inhibin A by follicle-stimulating hormone and local growth factors in human granulosa cells from small antral follicles.  J Clin Endocrinol. 2001;  20 330-336
  • 34 Welt C K, Adams J M, Sluss P M, Hall J E. Inhibin A and inhibin B responses to gonadotropin withdrawal depends on stage of follicle development.  J Clin Endocrinol Metab. 1999;  86 2163-2169
  • 35 Findlay J K, Drummond A E, Dyson M, Baillie A J, Robertson D M, Ethier J-F. Production and actions of inhibin and activin during folliculogenesis in the rat.  Mol Cell Endocrinol. 2001;  180 139-144
  • 36 Feng Z M, Bardin C W, Chen C LC. Characterization and regulation of testicular inhibin beta-subunit messenger RNA.  Mol Endocrinol. 1989;  3 939-948
  • 37 Dykema J C, Mayo K E. Messenger ribonucleic-acids encoding the common beta(B)-chain of inhibin and activin have distinct 5′-initiation sites and are differentially regulated in rat granulosa cells.  Endocrinology. 1994;  135 702-711
  • 38 Liu J Q, Kuulasmaa T, Kosma V M et al.. Expression of betaglycan, an inhibin coreceptor, in normal human ovaries and ovarian sex cord-stromal tumors and its regulation in cultured human granulosa-luteal cells.  J Clin Endocrinol Metab. 2003;  88 5002-5008
  • 39 Michel U, McMaster J W, Findlay J K. Regulation of steady-state follistatin messenger RNA levels in rat granulosa cells in vitro.  J Mol Endocrinol. 1992;  9 147-156
  • 40 Burns K H, Yan C N, Kumar T R, Matzuk M M. Analysis of ovarian gene expression in follicle-stimulating hormone beta knockout mice.  Endocrinology. 2001;  142 2742-2751
  • 41 Roy S K, Albee L. Requirement for follicle stimulating hormone action in the formation of primordial follicles during perinatal ovarian development in the hamster.  Endocrinology. 2000;  141 4449-4456
  • 42 Billiar R B, Zachos N C, Burch M G, Albrecht E D, Pepe G J. Up-regulation of alpha inhibin expression in the fetal ovary of estrogen-suppressed baboons is associated with impaired fetal ovarian folliculogenesis.  Biol Reprod. 2003;  68 1989-1996
  • 43 Onagbesan O M, Safi M, Decuypere E, Bruggeman V. Developmental changes in inhibin alpha and inhibin/activin beta A and beta B mRNA levels in the gonads during post-hatch prepubertal development of male and female chickens.  Mol Reprod Dev. 2004;  68 319-326
  • 44 Bruggeman V, Van As P, Decuypere E. Developmental endocrinology of the reproductive axis in the chicken embryo.  Comp Biochem Physiol A Mol Integr Physiol. 2002;  131 839-846
  • 45 Safi M, Onagbesan O M, Volckaert G, Vanmontfort D, Bruggeman V, Decuypere E. Developmental expression of activin/inhibin alpha-and beta(A)-subunit genes in the gonads of male and female chick embryos.  Gen Comp Endocrinol. 2001;  122 304-311
  • 46 Iguchi T, Takasugi N. Polyovular follicles in the ovary of immature mice exposed prenatally to diethylstilbestrol.  Anat Embryol (Berl). 1986;  175 53-55
  • 47 Iguchi T, Takasugi N, Bern H A, Mills K T. Frequent occurrence of polyovular follicles in ovaries of mice exposed neonatally to diethylstilbestrol.  Teratology. 1986;  34 29-35
  • 48 Jefferson W N, Couse J F, Padilla-Banks E, Korach K S, Newbold R R. Neonatal exposure to genistein induces estrogen receptor (ER) alpha expression and multioocyte follicles in the maturing mouse ovary: Evidence for ER beta-mediated and nonestrogenic actions.  Biol Reprod. 2002;  67 1285-1296
  • 49 Sar M, Welsch F. Differential expression of estrogen receptor-beta and estrogen receptor-alpha in the rat ovary.  Endocrinology. 1999;  140 963-971

Louis J Guillette Jr.Ph.D. 

Department of Zoology, 223 Bartram Hall, Box 118525

University of Florida, Gainesville, FL 32611

Email: ljg@zoo.ufl.edu

    >