Semin Hear 2006; 27(3): 193-204
DOI: 10.1055/s-2006-947286
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Future Trends and Potential for Treatment of Sensorineural Hearing Loss

Zippora Brownstein1 , Karen B. Avraham1
  • 1Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
Further Information

Publication History

Publication Date:
17 July 2006 (online)

ABSTRACT

Damage and loss of hair cells in the inner ear is the most frequent cause of hearing loss (HL), since mammalian hair cells are not replenished once lost. To date, the treatment of HL consists of hearing aids or cochlear implants, but both options restore hearing with limited success. Gene therapy is an attractive option as a means for treating sensorineural hearing impairment, although at present it is investigational. The finding that hair cells can regenerate in nonmammalian vertebrates has triggered many studies, with the hope of simulating a similar process in humans. Current research that focuses on the auditory pathways, the genes involved in HL, efficient ways to transfer therapeutic agents into the inner ear, and optimization of gene manipulation, gene therapy, and stem cell treatment raises hope for restoring hearing and curing deafness.

REFERENCES

  • 1 Estivill X, Fortina P, Surrey S et al.. Connexin-26 mutations in sporadic and inherited sensorineural deafness.  Lancet. 1998;  351 394-398
  • 2 Nadol Jr J B. Hearing loss.  N Engl J Med. 1993;  329 1092-1102
  • 3 Zlotogora J, Barges S. High incidence of profound deafness in an isolated community.  Genet Test. 2003;  7 143-145
  • 4 Denoyelle F, Marlin S, Weil D et al.. Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect: implications for genetic counselling.  Lancet. 1999;  353 1298-1303
  • 5 Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals.  J Comp Neurol. 2003;  467 207-231
  • 6 Linthicum Jr F H, Anderson W. Cochlear implantation of totally deaf ears. Histologic evaluation of candidacy.  Acta Otolaryngol. 1991;  111 327-331
  • 7 Chen A H, Mueller R F, Prasad S D et al.. Presymptomatic diagnosis of nonsyndromic hearing loss by genotyping.  Arch Otolaryngol Head Neck Surg. 1998;  124 20-24
  • 8 Nadol Jr J B. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation.  Otolaryngol Head Neck Surg. 1997;  117 220-228
  • 9 Berlin C I, Hood L, Morlet T, Rose K, Brashears S. Auditory neuropathy/dys-synchrony: diagnosis and management.  Ment Retard Dev Disabil Res Rev. 2003;  9 225-231
  • 10 Cotanche D A. Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma.  Hear Res. 1987;  30 181-195
  • 11 Cruz R M, Lambert P R, Rubel E W. Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea.  Arch Otolaryngol Head Neck Surg. 1987;  113 1058-1062
  • 12 Weisleder P, Rubel E W. Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium.  J Comp Neurol. 1993;  331 97-110
  • 13 Bianchi L M, Raz Y. Methods for providing therapeutic agents to treat damaged spiral ganglion neurons.  Curr Drug Targets CNS Neurol Disord. 2004;  3 195-199
  • 14 Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y. Gene transfer into supporting cells of the organ of Corti.  Hear Res. 2002;  173 187-197
  • 15 Duan M, Venail F, Spencer N, Mezzina M. Treatment of peripheral sensorineural hearing loss: gene therapy.  Gene Ther. 2004;  11(suppl 1) S51-S56
  • 16 Kessel R G, Kardon R H. The shape, polarization, and innervation of sensory hair cells in the guinea pig crista ampullaris and macula utriculi.  Scan Electron Microsc. 1979;  967-974, 962
  • 17 Schuknecht H F. Pathology of the Ear. Philadelphia, PA; Lea & Febiger 1993
  • 18 Chen Z, Ulfendahl M, Ruan R, Tan L, Duan M. Protection of auditory function against noise trauma with local caroverine administration in guinea pigs.  Hear Res. 2004;  197 131-136
  • 19 Jero J, Mhatre A N, Tseng C J et al.. Cochlear gene delivery through an intact round window membrane in mouse.  Hum Gene Ther. 2001;  12 539-548
  • 20 Lalwani A K, Jero J, Mhatre A N. Current issues in cochlear gene transfer.  Audiol Neurootol. 2002;  7 146-151
  • 21 Ernfors P, Duan M L, ElShamy W M, Canlon B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3.  Nat Med. 1996;  2 463-467
  • 22 Duan M, Agerman K, Ernfors P, Canlon B. Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity.  Proc Natl Acad Sci USA. 2000;  97 7597-7602
  • 23 Hoffer M E, Balough B J, Gottshall K R et al.. Sustained-release devices in inner ear medical therapy.  Otolaryngol Clin North Am. 2004;  37 1053-1060
  • 24 Lalwani A K, Mhatre A N. Cochlear gene therapy.  Ear Hear. 2003;  24 342-348
  • 25 Maiorana C R, Staecker H. Advances in inner ear gene therapy: exploring cochlear protection and regeneration.  Curr Opin Otolaryngol Head Neck Surg. 2005;  13 308-312
  • 26 Balak K J, Corwin J T, Jones J E. Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system.  J Neurosci. 1990;  10 2502-2512
  • 27 Cotanche D A. Structural recovery from sound and aminoglycoside damage in the avian cochlea.  Audiol Neurootol. 1999;  4 271-285
  • 28 Stone J S, Oesterle E C, Rubel E W. Recent insights into regeneration of auditory and vestibular hair cells.  Curr Opin Neurol. 1998;  11 17-24
  • 29 Forge A, Li L, Corwin J T, Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear.  Science. 1993;  259 1616-1619
  • 30 Lopez I, Honrubia V, Lee S C, Schoeman G, Beykirch K. Quantification of the process of hair cell loss and recovery in the chinchilla crista ampullaris after gentamicin treatment.  Int J Dev Neurosci. 1997;  15 447-461
  • 31 Bermingham-McDonogh O, Rubel E W. Hair cell regeneration: winging our way towards a sound future.  Curr Opin Neurobiol. 2003;  13 119-126
  • 32 Matsui J I, Cotanche D A. Sensory hair cell death and regeneration: two halves of the same equation.  Curr Opin Otolaryngol Head Neck Surg. 2004;  12 418-425
  • 33 Torres M, Giraldez F. The development of the vertebrate inner ear.  Mech Dev. 1998;  71 5-21
  • 34 Fekete D M. Making sense of making hair cells.  Trends Neurosci. 2000;  23 386
  • 35 Bermingham N A, Hassan B A, Price S D et al.. Math1: an essential gene for the generation of inner ear hair cells.  Science. 1999;  284 1837-1841
  • 36 Shou J, Zheng J L, Gao W Q. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1.  Mol Cell Neurosci. 2003;  23 169-179
  • 37 Kawamoto K, Ishimoto S, Minoda R, Brough D E, Raphael Y. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo.  J Neurosci. 2003;  23 4395-4400
  • 38 Izumikawa M, Minoda R, Kawamoto K et al.. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals.  Nat Med. 2005;  11 271-276
  • 39 Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti.  Development. 1999;  126 1581-1590
  • 40 Sage C, Huang M, Karimi K et al.. Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein.  Science. 2005;  307 1114-1118
  • 41 Mantela J, Jiang Z, Ylikoski J, Fritzsch B, Zacksenhaus E, Pirvola U. The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear.  Development. 2005;  132 2377-2388
  • 42 Lowenheim H, Furness D N, Kil J et al.. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti.  Proc Natl Acad Sci USA. 1999;  96 4084-4088
  • 43 Chen P, Zindy F, Abdala C et al.. Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d.  Nat Cell Biol. 2003;  5 422-426
  • 44 Parker M A, Cotanche D A. The potential use of stem cells for cochlear repair.  Audiol Neurootol. 2004;  9 72-80
  • 45 Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration.  Physiol Rev. 2005;  85 1373-1416
  • 46 Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.  Science. 2001;  292 1389-1394
  • 47 Bjorklund L M, Sanchez-Pernaute R, Chung S et al.. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model.  Proc Natl Acad Sci USA. 2002;  99 2344-2349
  • 48 Kim J H, Auerbach J M, Rodriguez-Gomez J A et al.. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease.  Nature. 2002;  418 50-56
  • 49 Wichterle H, Lieberam I, Porter J A, Jessell T M. Directed differentiation of embryonic stem cells into motor neurons.  Cell. 2002;  110 385-397
  • 50 Li H, Roblin G, Liu H, Heller S. Generation of hair cells by stepwise differentiation of embryonic stem cells.  Proc Natl Acad Sci USA. 2003;  100 13495-13500
  • 51 Matsui J I, Parker M A, Ryals B M, Cotanche D A. Regeneration and replacement in the vertebrate inner ear.  Drug Discov Today. 2005;  10 1307-1312
  • 52 Xiang M, Gan L, Li D et al.. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development.  Proc Natl Acad Sci USA. 1997;  94 9445-9450
  • 53 Kanda S, Tamada Y, Yoshidome A, Hayashi I, Nishiyama T. Over-expression of bHLH genes facilitate neural formation of mouse embryonic stem (ES) cells in vitro.  Int J Dev Neurosci. 2004;  22 149-156
  • 54 Tateya I, Nakagawa T, Iguchi F et al.. Fate of neural stem cells grafted into injured inner ears of mice.  Neuroreport. 2003;  14 1677-1681
  • 55 Iguchi F, Nakagawa T, Tateya I et al.. Trophic support of mouse inner ear by neural stem cell transplantation.  Neuroreport. 2003;  14 77-80
  • 56 Parker M A, Anderson J K, Corliss D A et al.. Expression profile of an operationally-defined neural stem cell clone.  Exp Neurol. 2005;  194 320-332
  • 57 Kelley M W. Exposing the roots of hair cell regeneration in the ear.  Nat Med. 2003;  9 1257-1259
  • 58 Li H, Corrales C E, Edge A, Heller S. Stem cells as therapy for hearing loss.  Trends Mol Med. 2004;  10 309-315
  • 59 Inzunza J, Sahlen S, Holmberg K et al.. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation.  Mol Hum Reprod. 2004;  10 461-466
  • 60 Draper J S, Smith K, Gokhale P et al.. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells.  Nat Biotechnol. 2004;  22 53-54
  • 61 Han J J, Mhatre A N, Wareing M et al.. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector.  Hum Gene Ther. 1999;  10 1867-1873
  • 62 Staecker H, Li D, O'Malley Jr B W, Van De Water T R. Gene expression in the mammalian cochlea: a study of multiple vector systems.  Acta Otolaryngol. 2001;  121 157-163
  • 63 Lalwani A K, Walsh B J, Carvalho G J, Muzyczka N, Mhatre A N. Expression of adeno-associated virus integrated transgene within the mammalian vestibular organs.  Am J Otol. 1998;  19 390-395
  • 64 Wareing M, Mhatre A N, Pettis R et al.. Cationic liposome mediated transgene expression in the guinea pig cochlea.  Hear Res. 1999;  128 61-69

 Prof.
Karen B AvrahamPh.D. 

Department of Human Molecular Genetics and Biochemistry

Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

Email: karena@post.tau.ac.il

    >