References and Notes
<A NAME="RW11206ST-1A">1a</A>
Lubineau A.
Auge J.
Queneau Y.
Synthesis
1994,
741
<A NAME="RW11206ST-1B">1b</A>
Li CJ.
Chem. Rev.
1993,
93:
2023
<A NAME="RW11206ST-1C">1c</A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RW11206ST-1D">1d</A>
Li CJ.
Tetrahedron
1996,
52:
5643
<A NAME="RW11206ST-1E">1e</A>
Chan TH.
Isaac MB.
Pure Appl. Chem.
1996,
68:
919
<A NAME="RW11206ST-1F">1f</A>
Li CJ.
Chem. Rev.
2005,
105:
3095
For recent examples, see:
<A NAME="RW11206ST-2A">2a</A>
Yu CZ.
Liu B.
Hu LQ.
J. Org. Chem.
2001,
66:
919
<A NAME="RW11206ST-2B">2b</A>
Talukdar S.
Fang JM.
J. Org. Chem.
2001,
66:
330
<A NAME="RW11206ST-2C">2c</A>
Laskar DD.
Prajapati D.
Sandhu JS.
Tetrahedron Lett.
2001,
42:
7883
<A NAME="RW11206ST-2D">2d</A>
Wang L.
Li PH.
Zhou L.
Tetrahedron Lett.
2002,
43:
8141
<A NAME="RW11206ST-2E">2e</A>
Matsukawa S.
Hinakubo Y.
Org. Lett.
2003,
5:
1221
<A NAME="RW11206ST-3A">3a</A>
Wang L.
Zhou LH.
Zhang YM.
Synlett
1999,
1065
<A NAME="RW11206ST-3B">3b</A>
Wang L.
Zhang YM.
Tetrahedron
1999,
55:
10695
<A NAME="RW11206ST-3C">3c</A>
Liu X.
Liu YK.
Zhang YM.
Tetrahedron Lett.
2002,
43:
6787
For reviews, see:
<A NAME="RW11206ST-4A">4a</A>
Ciganek E.
Org. React. (N.Y.)
1997,
51:
201
<A NAME="RW11206ST-4B">4b</A>
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RW11206ST-4C">4c</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
For recent examples, see:
<A NAME="RW11206ST-5A">5a</A>
Chandrasekhar S.
Basu D.
Rambabu C.
Tetrahedron Lett.
2006,
47:
3059
<A NAME="RW11206ST-5B">5b</A>
Shanmugarn P.
Rajasingh P.
Synlett
2005,
939
<A NAME="RW11206ST-5C">5c</A>
Das B.
Majhi A.
Banerjee J.
Chowdhury N.
Venkateswarlu K.
Tetrahedron Lett.
2005,
46:
7913
<A NAME="RW11206ST-5D">5d</A>
Das B.
Mahender G.
Chowdhury N.
Banerjee J.
Synlett
2005,
1000
<A NAME="RW11206ST-5E">5e</A>
Kabalka GW.
Venkataiah B.
Dong G.
Org. Lett.
2003,
5:
3803
<A NAME="RW11206ST-5F">5f</A>
Kabalka GW.
Venkataiah B.
Dong G.
Tetrahedron Lett.
2003,
44:
4673
<A NAME="RW11206ST-6A">6a</A>
Liu YK.
Li J.
Zheng H.
Xu DQ.
Xu ZY.
Zhang YM.
Synlett
2005,
2999
<A NAME="RW11206ST-6B">6b</A>
Liu YK.
Xu DQ.
Xu ZY.
Zhang YM.
J. Zhejiang Univ. Science, B
2006,
7:
393
<A NAME="RW11206ST-6C">6c</A>
Li J.
Wang XX.
Zhang YM.
Synlett
2005,
1039
<A NAME="RW11206ST-6D">6d</A>
Li J.
Wang XX.
Zhang YM.
Tetrahedron Lett.
2005,
46:
5233
<A NAME="RW11206ST-7">7</A>
Liu YK.
Xu XS.
Zheng H.
Xu DQ.
Xu ZY.
Zhang YM.
Synlett
2006,
571
<A NAME="RW11206ST-8">8</A>
One-Pot Synthesis of Di(
Z
-allyl) Disulfides or (2
E
)-Methyl Cinnamic Esters; General Procedure: In a 25-mL flask were added Na2SSO3·5H2O (0.25 g, 1.0 mmol), Baylis-Hillman acetate 1 (1.0 mmol), and anhyd MeOH (15 mL). The mixture was stirred at r.t. for 4-8 h until
the sodium (Z)-allyl thiosulfates were formed.7 MeOH was removed and THF (20 mL) was added under an inert atmosphere. Then Sm (0.15
g, 1 mmol) and a trace amount of I2 were added to the resulting mixture followed by the addition of a sat. aq solution
of NH4Cl (4 mL) dropwise. The mixture was stirred at r.t. for the time given in Table
[1]
. Upon completion, the reaction mixture was quenched with dil. HCl (5%, 15 mL), extracted
with Et2O (2 × 30 mL), washed with brine (15 mL), and dried over MgSO4. After evaporation of the solvent, the residue was purified by chromatography [cyclohexane-EtOAc
(9:1) (R = alkyl groups) or cyclohexane-EtOAc (6:1) (R = aryl groups)].
<A NAME="RW11206ST-9A">9a</A>
Karchner JH.
The Analytical Chemistry of Sulfur and its Compounds
Wiley;
New York:
1972.
<A NAME="RW11206ST-9B">9b</A>
Ogawa A.
Tetrahedron Lett.
1987,
28:
3271
<A NAME="RW11206ST-9C">9c</A>
Antebi S.
Tetrahedron Lett.
1985,
26:
2609
<A NAME="RW11206ST-10A">10a</A>
Parry RJ.
Tetrahedron
1983,
39:
1215
<A NAME="RW11206ST-10B">10b</A>
Arora A.
Tripathi C.
Shukla Y.
Curr. Cancer Ther. Rev.
2005,
1:
199
<A NAME="RW11206ST-10C">10c</A>
Arora A.
Seth K.
Shukla Y.
Carcinogenesis
2004,
25:
941
<A NAME="RW11206ST-10D">10d</A>
Thomas RD.
Green M.
Wilson C.
Sadrud-Din S.
Carcinogenesis
2004,
25:
787
<A NAME="RW11206ST-10E">10e</A>
Green M.
Wilson C.
Newell O.
Sadrud-Din S.
Thomas R.
Food Chem. Toxicol.
2005,
43:
1323
All Baylis-Hillman acetates were prepared according to the literature:
<A NAME="RW11206ST-11A">11a</A>
Hoffman HMR.
Rabe J.
Angew. Chem., Int. Ed. Engl.
1983,
22:
795
<A NAME="RW11206ST-11B">11b</A>
David HO.
Kenneth MN.
J. Org. Chem.
2003,
68:
6427
<A NAME="RW11206ST-12">12</A>
According to NOESY experiments, there is no NOE correlation between the signal of
the internal olefin proton and the allylic methylene protons.
The trisubstituted cinnamic ester moiety manifests a significant role in several biologically
active compounds, see:
<A NAME="RW11206ST-13A">13a</A>
Senokuchi K.
Nakai H.
Nakayama Y.
Odagaki Y.
Sakaki K.
Kato M.
Maruyama T.
Miyazaki T.
Ito H.
Kamiyasu K.
Kim S.
Kawamura M.
Hamanaka N.
J. Med. Chem.
1995,
38:
4508
<A NAME="RW11206ST-13B">13b</A>
Senokuchi K.
Nakai H.
Nakayama Y.
Odagaki Y.
Sakaki K.
Kato M.
Maruyama T.
Miyazaki T.
Ito H.
Kamiyasu K.
Kim S.
Kawamura M.
Hamanaka N.
J. Med. Chem.
1995,
38:
2521
<A NAME="RW11206ST-13C">13c</A>
Watanabe T.
Hayashi K.
Yoshimatsu S.
Sakai K.
Takeyama S.
Takashima K.
J. Med. Chem.
1980,
23:
50
(2E)-Methyl cinnamic eaters prepared from Baylis-Hillman adducts or derivatives by other
approaches, see:
<A NAME="RW11206ST-14A">14a</A>
Shadakshari U.
Nayak SK.
Tetrahedron
2001,
57:
4599
<A NAME="RW11206ST-14B">14b</A>
Ravichandran S.
Synth. Commun.
2001,
31:
2055
<A NAME="RW11206ST-14C">14c</A>
Das B.
Banerjee J.
Majhi A.
Mahender G.
Tetrahedron Lett.
2004,
45:
9225
<A NAME="RW11206ST-14D">14d</A>
Li J.
Qian WX.
Zhang YM.
Tetrahedron
2004,
60:
5793
<A NAME="RW11206ST-14E">14e</A>
Li J.
Xu H.
Zhang YM.
Tetrahedron Lett.
2005,
46:
1931
<A NAME="RW11206ST-14F">14f</A>
Chandrasekhar S.
Chandrashekar G.
Vijeender K.
Reddy MS.
Tetrahedron Lett.
2006,
47:
3475
<A NAME="RW11206ST-15">15</A>
Compound 3a: IR (film): 1719, 1642 cm-1. 1H NMR (CDCl3, 400 MHz): δ = 1.10 (t, 6 H, J = 7.2 Hz), 2.30-2.37 (m, 4 H), 3.69 (s, 4 H), 3.77 (s, 6 H), 6.93 (t, 2 H, J = 7.2 Hz). 13C NMR (CDCl3, 100 MHz): δ = 13.34, 22.47, 35.00, 51.85, 127.44, 147.90, 166.97. MS (70 eV): m/z (%) = 318 (M+). Anal. Calcd for C14H22O4S2: C, 52.80; H, 6.96. Found: C, 53.23; H, 6.90.
Compound 3b: IR (film): 1721, 1642 cm-1. 1H NMR (CDCl3, 400 MHz): δ = 0.88 (t, 6 H, J = 7.2 Hz), 1.25-1.47 (m, 20 H), 2.32 (q, 4 H, J = 7.2 Hz), 3.70 (s, 4 H), 3.77 (s, 6 H), 6.95 (t, 2 H, J = 7.2 Hz). 13C NMR (CDCl3, 100 MHz): δ = 22.59, 28.84, 29.09, 29.19, 29.24, 29.32, 31.71, 35.29, 51.89, 127.92,
146.78, 166.99. MS (70 eV): m/z (%) = 458 (M+). Anal. Calcd for C24H42O4S2: C, 62.84; H, 9.23. Found: C, 62.51; H, 9.28.
Compound 3c: IR (film): 1716, 1643 cm-1. 1H NMR (CDCl3, 400 MHz): δ = 2.62 (q, 4 H, J = 8.0 Hz), 2.78 (t, 4 H, J = 8.0 Hz), 3.62 (s, 4 H), 3.72 (s, 6 H), 6.98 (t, 2 H, J = 8.0 Hz), 7.19-7.32 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 31.32, 35.23, 35.38, 52.29, 126.49, 128.66, 128.77, 128.86, 141.01,
145.43, 167.13. MS (70 eV): m/z (%) = 470 (M+). Anal. Calcd for C26H30O4S2: C, 66.35; H, 6.42. Found: C, 66.72; H, 6.48.