References and Notes
<A NAME="RU07806ST-1A">1a</A>
Kitazume T.
Yamazaki T.
Top. Curr. Chem.
1997,
193:
91
<A NAME="RU07806ST-1B">1b</A>
Percy JM.
Top. Curr. Chem.
1997,
193:
131
<A NAME="RU07806ST-1C">1c</A>
Banks RE.
Smart BE.
Tatlow JC.
Organofluorine Chemistry: Principles and Commercial Applications
Plenum;
New York:
1994.
<A NAME="RU07806ST-1D">1d</A>
Hiyama T.
Organofluorine Compounds: Chemistry and Application
Springer;
New York:
2000.
<A NAME="RU07806ST-1E">1e</A>
Filler R.
Kobayashi Y.
Biochemical Aspects of Fluorine Chemistry
Elsevier Biomedical Press and Kodansha Ltd.;
New York:
1982.
<A NAME="RU07806ST-1F">1f</A>
Welch JT.
Eswarakrishnan S.
Fluorine in Bioorganic Chemistry
John Wiley and Sons;
New York:
1991.
<A NAME="RU07806ST-1G">1g</A>
Welch JT.
Tetrahedron
1987,
43:
3123
<A NAME="RU07806ST-1H">1h</A>
Chambers RD.
Fluorine in Organic Chemistry
Blackwell Publishing Ltd.;
Oxford:
2004.
<A NAME="RU07806ST-2A">2a</A>
Tsuji J.
Palladium Reagents and Catalysts
John Wiley and Sons;
Chichester:
2004.
<A NAME="RU07806ST-2B">2b</A>
Godleski S. In Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Semmelhack MF.
Pergamon;
Oxford:
1991.
p.585
<A NAME="RU07806ST-2C">2c</A>
Consiglio G.
Waymouth RM.
Chem. Rev.
1989,
89:
257
<A NAME="RU07806ST-2D">2d</A>
Tsuji J.
Minami I.
Acc. Chem. Res.
1987,
20:
140
<A NAME="RU07806ST-2E">2e</A>
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
<A NAME="RU07806ST-2F">2f</A>
Hayashi T.
J. Organomet. Chem.
1999,
576:
195
<A NAME="RU07806ST-2G">2g</A>
Johannsen M.
Jørgensen KA.
Chem. Rev.
1998,
1689
<A NAME="RU07806ST-2H">2h</A>
Trost BM.
Van Vranken DL.
Chem. Rev.
1996,
96:
395
<A NAME="RU07806ST-2I">2i</A>
Trost BM.
Crawley ML.
Chem. Rev.
2003,
103:
2921
<A NAME="RU07806ST-2J">2j</A>
Dai L.-X.
Tu A.
You S.-L.
Deng W.-P.
Hou X.-L.
Acc. Chem. Res.
2003,
36:
659
<A NAME="RU07806ST-3A">3a</A>
Konno T.
Takehana T.
Ishihara T.
Yamanaka H.
Org. Biomol. Chem.
2004,
2:
93
<A NAME="RU07806ST-3B">3b</A>
Okano T.
Matsubara H.
Kusukawa T.
Fujita M.
J. Organomet. Chem.
2003,
676:
43
<A NAME="RU07806ST-3C">3c</A>
Hanzawa Y.
Ishizuka S.
Ito H.
Kobayashi Y.
Taguchi T.
J. Chem. Soc., Chem. Commun.
1990,
394
<A NAME="RU07806ST-3D">3d</A>
Hanzawa Y.
Ishizawa S.
Kobayashi Y.
Chem. Pharm. Bull.
1988,
36:
4209
<A NAME="RU07806ST-3E">3e</A>
Konno T.
Nagata K.
Ishihara T.
Yamanaka H.
J. Org. Chem.
2002,
67:
1768
<A NAME="RU07806ST-3F">3f</A>
Konno T.
Ishihara T.
Yamanaka H.
Tetrahedron Lett.
2000,
41:
8467
<A NAME="RU07806ST-3G">3g</A>
Konno T.
Takehana T.
Mishima M.
Ishihara T.
J. Org. Chem.
2006,
71:
3545
<A NAME="RU07806ST-3H">3h</A>
Fish PV.
Reddy SP.
Lee CH.
Johnson WS.
Tetrahedron Lett.
1992,
33:
8001
<A NAME="RU07806ST-4A">4a</A>
Takagi Y.
Kashiwagi M.
Kihara H.
Itoh T.
Tetrahedron Lett.
1999,
40:
2801
<A NAME="RU07806ST-4B">4b</A>
Takagi Y.
Nakatani T.
Itoh T.
Oshiki T.
Tetrahedron Lett.
2000,
41:
7889
<A NAME="RU07806ST-4C">4c</A>
Normat JF.
Fpulon JP.
Masure D.
Sauvetre R.
Villieras J.
Synthesis
1975,
122
<A NAME="RU07806ST-5A">5a</A>
Hayashi T.
Kawatsura M.
Uozumi Y.
Chem. Commun.
1997,
561
<A NAME="RU07806ST-5B">5b</A>
Hayashi T.
Kawatsura M.
Uozumi Y.
J. Am. Chem. Soc.
1998,
120:
1681
<A NAME="RU07806ST-5C">5c</A>
Prétôt R.
Pfaltz A.
Angew. Chem. Int. Ed.
1998,
37:
323
<A NAME="RU07806ST-5D">5d</A>
You S.-L.
Zhu X.-Z.
Luo Y.-M.
Hou X.-L.
Dai L.-X.
J. Am. Chem. Soc.
2001,
123:
7471
<A NAME="RU07806ST-5E">5e</A>
Faller JW.
Wilt JC.
Parr J.
Org. Lett.
2004,
6:
1301
<A NAME="RU07806ST-5F">5f</A>
Zheng W.-H.
Sun N.
Hou X.-L.
Org. Lett.
2005,
7:
5151
<A NAME="RU07806ST-6">6</A>
Typical Procedure for the Reaction of 1-Phenyl-2,3,3-trifluoroallyl Acetate (3A) with
Diethyl Methylmalonate (6a, Entry 4)
To a solution of [PdCl(π-C3H5)]2 (18.3 mg, 0.050 mmol) and XANTPHOS (57.9 mg, 0.100 mmol) in toluene (5 mL) was added
2,3,3-trifluoro-1-phenylallyl acetate (230 mg, 1.00 mmol). A solution of sodium salt
of diethyl methylmalonate prepared from diethyl methylmalonate (261 mg, 1.50 mmol)
and NaH (33.6 mg, 1.40 mmol) in THF (1.5 mL) was added dropwise at 0 °C, and the resultant
mixture was heated up to 60 °C and stirred for 12 h. Then, Et2O and H2O were added to the reaction mixture, and the organic phase was separated, and dried
over MgSO4 and evaporated. The regioselectivity was determined from the 1H NMR spectrum of the crude materials, then determined to be 99:1. Analytically pure
samples were obtained by silica gel column chromatog-raphy (hexane-Et2O, 98:2) to give 306 mg (89%) of alkylation product 4Aa. 1H NMR (500 MHz, CDCl3): δ = 1.13 (t, J = 7.1 Hz, 3 H), 1.27 (t, J = 7.3 Hz, 3 H), 1.58 (d, J
HF = 1.8 Hz, 3 H), 3.99-4.09 (m, 2 H), 4.23 (qd, J = 7.1 Hz, J
HF = 0.9 Hz, 2 H), 4.60 (ddd, J
HF = 35.5, 3.0, 1.6 Hz, 1 H), 7.27-7.38 (5 H, m). 13C NMR (125 MHz, CDCl3): δ = 13.8, 13.9, 18.4, 45.4 (ddd, J
CF = 17.3, 4.8, 1.9 Hz), 57.6, 61.7, 61.9, 128.0, 128.4, 129.1 (ddd, J
CF = 240.9, 48.9, 17.3 Hz), 129.8, 135.4, 153.1 (ddd, J
CF = 47.1, 287.9, 277.3 Hz), 169.9, 170.4. 19F NMR (470 MHz, CDCl3): δ = -13.5 (ddd, J
FF = 109.4, 34.5 Hz, J
FH = 34.5 Hz), 44.2 (dd, J
FF = 109.4, 74.5 Hz), 58.0 (dd, J
FF = 34.5, 74.5 Hz).
<A NAME="RU07806ST-7">7</A> Williams reported the reaction of methyl-substituted allyl acetate 1 and 2 (R = Me) gave branch selectivity by using P(t-Bu)3, however, we confirmed the reaction of 1-phenyl-2-propenyl acetate 1 (R = Ph) gave 60% branch selectivity:
Acemoglu L.
Williams JMJ.
Adv. Synth. Catal.
2001,
343:
75
<A NAME="RU07806ST-8">8</A>
Kranenburg M.
van der Burgt YEM.
Kamer PCJ.
van Leeuwen PWNM.
Goubitz K.
Fraanje J.
Organometallics
1995,
14:
3018
<A NAME="RU07806ST-9">9</A>
XANTPHOS [9,9-dimethyl-4,5-bis(diphenylphos-phino)xanthene] gave 92% linear selectivity
for the reaction of 1-phenyl-2-propenyl acetate 1 (R = Ph).