Abstract
Aldimines react with acetyl cyanide in the presence of a catalytic amount of a thiourea
catalyst to give the corresponding N-acetylated amino nitriles in high yields. The
scope of the reaction is broad and both aromatic as well as aliphatic aldimines can
readily be used.
Key words
acylcyanation - α-amino nitrile - Brønsted acid catalysis - organocatalysis - acetyl
cyanide
References and Notes
For reviews, see:
<A NAME="RG27406ST-1A">1a</A>
Gröger H.
Chem. Rev.
2003,
103:
2795
<A NAME="RG27406ST-1B">1b</A>
Yet L.
Angew. Chem. Int. Ed.
2001,
40:
875
<A NAME="RG27406ST-1C">1c</A>
Spino C.
Angew. Chem. Int. Ed.
2004,
43:
1764
<A NAME="RG27406ST-2A">2a</A>
Tian J.
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2002,
41:
3636
<A NAME="RG27406ST-2B">2b</A>
Tian J.
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Org. Lett.
2003,
5:
3021
<A NAME="RG27406ST-2C">2c</A>
Yamagiwa N.
Tian J.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
3413
<A NAME="RG27406ST-2D">2d</A>
Tian S.-K.
Deng L.
J. Am. Chem. Soc.
2001,
123:
6295
<A NAME="RG27406ST-2E">2e</A>
Casas J.
Baeza A.
Sansano JM.
Nájera C.
Saá JM.
Tetrahedron: Asymmetry
2003,
14:
197
<A NAME="RG27406ST-2F">2f</A>
Belokon YN.
Blacker AJ.
Clutterbuck LA.
North M.
Org. Lett.
2003,
5:
4505
<A NAME="RG27406ST-2G">2g</A>
Lundgren S.
Wingstrand E.
Penhoat M.
Moberg C.
J. Am. Chem. Soc.
2005,
127:
11592
<A NAME="RG27406ST-2H">2h</A>
Belokon YN.
Ishibashi E.
Nombra H.
North M.
Chem. Commun.
2006,
16:
1775
<A NAME="RG27406ST-3A">3a</A>
Dornow A.
Lüpfert S.
Chem. Ber.
1956,
89:
2718
<A NAME="RG27406ST-3B">3b</A>
Dornow A.
Lüpfert S.
Chem. Ber.
1957,
90:
1780
<A NAME="RG27406ST-3C">3c</A>
Dornow A, and
Lüpfert S. inventors; US Patent 2849477.
<A NAME="RG27406ST-4A">4a</A>
Gardent MJ.
Delépine MM.
C. R. Acad. Sci.
1958,
247:
2153
<A NAME="RG27406ST-4B">4b</A>
Rai M.
Krishan K.
Singh A.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1978,
16:
834
<A NAME="RG27406ST-4C">4c</A>
Sakamoto M.
Akiyama Y.
Furumi N.
Ishii K.
Tomimatsu Y.
Date T.
Chem. Pharm. Bull.
1983,
31:
2623
For reviews, see:
<A NAME="RG27406ST-5A">5a</A>
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
<A NAME="RG27406ST-5B">5b</A>
Akiyama T.
Itoh J.
Fuchibe K.
Adv. Synth. Catal.
2006,
348:
999
<A NAME="RG27406ST-5C">5c</A>
Taylor MS.
Jacobsen EN.
Angew. Chem. Int. Ed.
2006,
45:
1520
<A NAME="RG27406ST-5D">5d</A>
Connon SJ.
Chem. Eur. J.
2006,
12:
5418
<A NAME="RG27406ST-5E">5e</A>
Pihko PM.
Angew. Chem. Int. Ed.
2004,
43:
2062
<A NAME="RG27406ST-5F">5f</A>
Connon SJ.
Angew. Chem. Int. Ed.
2006,
45:
3909
<A NAME="RG27406ST-6">6</A>
Under our reaction conditions using triethylamine as the catalyst only 4% conversion
of imine 1a to product 4a was achieved.
<A NAME="RG27406ST-7">7</A>
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
<A NAME="RG27406ST-8A">8a</A>
Schreiner PR.
Wittkopp A.
Org. Lett.
2002,
4:
217
<A NAME="RG27406ST-8B">8b</A>
Wittkopp A.
Schreiner PR.
Chem. Eur. J.
2003,
9:
407
<A NAME="RG27406ST-9">9</A>
Even in the absence of catalyst, significant conversion (>30%) to the product was
observed.
<A NAME="RG27406ST-10">10</A>
Using the chiral phosphoric acid catalyst 3,3′-bis[(2,4,6-tris(isopropyl)phenyl]-5,5′,6,6′,7,7′,8,8′-octahydro-1,1-binaphthyl
hydrogen phosphate (10 mol%) at -40 °C, product 4a was obtained in 92% yield and 69:31 er.