Semin Reprod Med 2006; 24(5): 322-329
DOI: 10.1055/s-2006-952157
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Embryonic Stem Cells as a Potential Source of Gametes

Kinarm Ko1 , Hans R. Schöler1
  • 1Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
Further Information

Publication History

Publication Date:
22 November 2006 (online)

ABSTRACT

Embryonic stem cells (ESCs) have a remarkable capacity for pluripotency; that is, they are capable of differentiating into all types of cell lineages. Recent studies have reported that successful differentiation of mouse ESCs into primordial germ cells (PGCs) as well as into mature male and female gametes can be achieved in vitro and in vivo. In addition, human ESCs can be differentiated into PGCs. The differentiation of ESCs into germ cells of various stages appears to be a spontaneous and quick process, probably due to the nature of ESCs themselves and the microenvironment of the culture conditions that favor this process. Although the functionality of these ESC-derived gametes remains to be established, derivation of both male and female gametes from ESCs raises the possibility of using these gametes to gain a better understanding of basic reproductive biology and, in particular, in conjunction with nuclear transfer technology, to extend the potential for therapeutic cloning and the treatment for infertility. We review the current knowledge on the potential of ESCs to differentiate into both male and female gametes.

REFERENCES

  • 1 Chuma S, Kanatsu-Shinohara M, Inoue K et al.. Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis.  Development. 2005;  132(1) 117-122
  • 2 Zhang J, Liu J, Xu K P, Liu B, DiMattina M. Extracorporeal development and ultrarapid freezing of human fetal ova.  J Assist Reprod Genet. 1995;  12(6) 361-368
  • 3 Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro.  Proc Natl Acad Sci USA. 2003;  100(20) 11457-11462
  • 4 Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley G Q. Derivation of embryonic germ cells and male gametes from embryonic stem cells.  Nature. 2004;  427(6970) 148-154
  • 5 Hübner K, Fuhrmann G, Christenson L K et al.. Derivation of oocytes from mouse embryonic stem cells.  Science. 2003;  300(5623) 1251-1256
  • 6 Clark A T, Bodnar M S, Fox M et al.. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro.  Hum Mol Genet. 2004;  13(7) 727-739
  • 7 Lacham-Kaplan O, Chy H, Trounson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.  Stem Cells. 2006;  24 266-273
  • 8 McLaren A. Primordial germ cells in the mouse.  Dev Biol. 2003;  262(1) 1-15
  • 9 Chiquoine A D. The identification, origin, and migration of the primordial germ cells in the mouse embryo.  Anat Rec. 1954;  118(2) 135-146
  • 10 Ginsburg M, Snow M H, McLaren A. Primordial germ cells in the mouse embryo during gastrulation.  Development. 1990;  110(2) 521-528
  • 11 Sato M, Kimura T, Kurokawa K et al.. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells.  Mech Dev. 2002;  113(1) 91-94
  • 12 Saitou M, Barton S C, Surani M A. A molecular programme for the specification of germ cell fate in mice.  Nature. 2002;  418(6895) 293-300
  • 13 Clark J M, Eddy E M. Fine structural observations on the origin and associations of primordial germ cells of the mouse.  Dev Biol. 1975;  47(1) 136-155
  • 14 Donovan P J, Stott D, Cairns L A, Heasman J, Wylie C C. Migratory and postmigratory mouse primordial germ cells behave differently in culture.  Cell. 1986;  44(6) 831-838
  • 15 McLaren A. Meiosis and differentiation of mouse germ cells.  Symp Soc Exp Biol. 1984;  38 7-23
  • 16 Borum K. Oogenesis in the mouse. A study of the meiotic prophase.  Exp Cell Res. 1961;  24 495-507
  • 17 Speed R M. Meiosis in the foetal mouse ovary. I. An analysis at the light microscope level using surface-spreading.  Chromosoma. 1982;  85(3) 427-437
  • 18 Obata Y, Kono T, Hatada I. Gene silencing: maturation of mouse fetal germ cells in vitro.  Nature. 2002;  418(6897) 497
  • 19 Wylie C. Germ cells.  Cell. 1999;  96(2) 165-174
  • 20 Illmensee K, Mahowald A P. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg.  Proc Natl Acad Sci USA. 1974;  71(4) 1016-1020
  • 21 Knaut H, Pelegri F, Bohmann K, Schwarz H, Nusslein-Volhard C. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification.  J Cell Biol. 2000;  149(4) 875-888
  • 22 Strome S, Wood W B. Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans .  Proc Natl Acad Sci USA. 1982;  79(5) 1558-1562
  • 23 Lawson K A, Dunn N R, Roelen B A et al.. Bmp4 is required for the generation of primordial germ cells in the mouse embryo.  Genes Dev. 1999;  13(4) 424-436
  • 24 Ying Y, Qi X, Zhao G Q. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways.  Proc Natl Acad Sci USA. 2001;  98(14) 7858-7862
  • 25 Ying Y, Liu X M, Marble A, Lawson K A, Zhao G Q. Requirement of Bmp8b for the generation of primordial germ cells in the mouse.  Mol Endocrinol. 2000;  14(7) 1053-1063
  • 26 Heldin C H, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins.  Nature. 1997;  390(6659) 465-471
  • 27 Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system.  EMBO J. 2000;  19(8) 1745-1754
  • 28 Massague J, Chen Y G. Controlling TGF-beta signaling.  Genes Dev. 2000;  14(6) 627-644
  • 29 Ohinata Y, Payer B, O'Carroll D et al.. Blimp1 is a critical determinant of the germ cell lineage in mice.  Nature. 2005;  436(7048) 207-213
  • 30 Bendel-Stenzel M R, Gomperts M, Anderson R, Heasman J, Wylie C. The role of cadherins during primordial germ cell migration and early gonad formation in the mouse.  Mech Dev. 2000;  91(1-2) 143-152
  • 31 Di Carlo A, De Felici M. A role for E-cadherin in mouse primordial germ cell development.  Dev Biol. 2000;  226(2) 209-219
  • 32 Okamura D, Kimura T, Nakano T, Matsui Y. Cadherin-mediated cell interaction regulates germ cell determination in mice.  Development. 2003;  130(26) 6423-6430
  • 33 De Felici M, Scaldaferri M L, Farini D. Adhesion molecules for mouse primordial germ cells.  Front Biosci. 2005;  10 542-551
  • 34 Saitou M, Payer B, Lange U C, Erhardt S, Barton S C, Surani M A. Specification of germ cell fate in mice.  Philos Trans R Soc Lond B Biol Sci. 2003;  358(1436) 1363-1370
  • 35 Tanaka S S, Matsui Y. Developmentally regulated expression of mil-1 and mil-2, mouse interferon-induced transmembrane protein like genes, during formation and differentiation of primordial germ cells.  Gene Expr Patterns. 2002;  2(3-4) 297-303
  • 36 Fox N, Damjanov I, Martinez-Hernandez A, Knowles B B, Solter D. Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues.  Dev Biol. 1981;  83(2) 391-398
  • 37 Sandlow J I, Feng H L, Zheng L J, Sandra A. Migration and ultrastructural localization of the c-kit receptor protein in spermatogenic cells and spermatozoa of the mouse.  J Urol. 1999;  161(5) 1676-1680
  • 38 Pesce M, Di Carlo A, De Felici M. The c-kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture.  Mech Dev. 1997;  68(1-2) 37-44
  • 39 Rossi P, Sette C, Dolci S, Geremia R. Role of c-kit in mammalian spermatogenesis.  J Endocrinol Invest. 2000;  23(9) 609-615
  • 40 Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development.  Mech Dev. 2000;  93(1-2) 139-149
  • 41 Ruggiu M, Speed R, Taggart M et al.. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis.  Nature. 1997;  389(6646) 73-77
  • 42 Pesce M, Gross M K, Schöler H R. In line with our ancestors: Oct-4 and the mammalian germ.  Bioessays. 1998;  20(9) 722-732
  • 43 Palmieri S L, Peter W, Hess H, Schöler H R. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation.  Dev Biol. 1994;  166(1) 259-267
  • 44 Yeom Y I, Fuhrmann G, Ovitt C E et al.. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells.  Development. 1996;  122(3) 881-894
  • 45 Kehler J, Tolkunova E, Koschorz B et al.. Oct4 is required for primordial germ cell survival.  EMBO Rep. 2004;  5(11) 1078-1083
  • 46 Yoshimizu T, Sugiyama N, De Felice M et al.. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice.  Dev Growth Differ. 1999;  41(6) 675-684
  • 47 Resnick J L, Bixler L S, Cheng L, Donovan P J. Long-term proliferation of mouse primordial germ cells in culture.  Nature. 1992;  359(6395) 550-551
  • 48 Matsui Y, Zsebo K, Hogan B L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.  Cell. 1992;  70(5) 841-847
  • 49 Shamblott M J, Axelman J, Wang S et al.. Derivation of pluripotent stem cells from cultured human primordial germ cells.  Proc Natl Acad Sci USA. 1998;  95(23) 13726-13731
  • 50 Rathjen J, Rathjen P D. Lineage specific differentiation of mouse ES cells: formation and differentiation of early primitive ectoderm-like (EPL) cells.  Methods Enzymol. 2003;  365 3-25
  • 51 Castrillon D H, Quade B J, Wang T Y, Quigley C, Crum C P. The human VASA gene is specifically expressed in the germ cell lineage.  Proc Natl Acad Sci USA. 2000;  97(17) 9585-9590
  • 52 Smith A G. Embryo-derived stem cells: of mice and men.  Annu Rev Cell Dev Biol. 2001;  17 435-462
  • 53 Brook F A, Gardner R L. The origin and efficient derivation of embryonic stem cells in the mouse.  Proc Natl Acad Sci USA. 1997;  94(11) 5709-5712
  • 54 Koshimizu U, Watanabe M, Nakatsuji N. Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro.  Dev Biol. 1995;  168(2) 683-685
  • 55 Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton D A, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells.  Proc Natl Acad Sci USA. 2000;  97(21) 11307-11312
  • 56 Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S. Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation.  J Cell Sci. 2003;  116(Pt 16) 3363-3372
  • 57 Rossi P, Albanesi C, Grimaldi P, Geremia R. Expression of the mRNA for the ligand of c-kit in mouse Sertoli cells.  Biochem Biophys Res Commun. 1991;  176(2) 910-914
  • 58 Piquet-Pellorce C, Dorval-Coiffec I, Pham M D, Jegou B. Leukemia inhibitory factor expression and regulation within the testis.  Endocrinology. 2000;  141(3) 1136-1141
  • 59 Nilsson E E, Skinner M K. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development.  Biol Reprod. 2003;  69(4) 1265-1272
  • 60 Dong J, Albertini D F, Nishimori K, Kumar T R, Lu N, Matzuk M M. Growth differentiation factor-9 is required during early ovarian folliculogenesis.  Nature. 1996;  383(6600) 531-535
  • 61 Demeestere I, Gervy C, Centner J, Devreker F, Englert Y, Delbaere A. Effect of insulin-like growth factor-I during preantral follicular culture on steroidogenesis, in vitro oocyte maturation, and embryo development in mice.  Biol Reprod. 2004;  70(6) 1664-1669
  • 62 Nayernia K, Li M, Jaroszynski L et al.. Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells.  Hum Mol Genet. 2004;  13(14) 1451-1460
  • 63 Cox S, Shaw J, Jenkin G. Follicular development in transplanted fetal and neonatal mouse ovaries is influenced by the gonadal status of the adult recipient.  Fertil Steril. 2000;  74(2) 366-371

 Dr.
H. R Schöler

Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology

Röntgenstrasse 20, 48149 Münster, Germany

Email: schoeler@mpi-muenster.mpg.de

    >