References and Notes
<A NAME="RU12206ST-1A">1a</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
<A NAME="RU12206ST-1B">1b</A>
Lee KY.
Gowrisankar S.
Kim JN.
Bull. Korean Chem. Soc.
2005,
26:
1481
<A NAME="RU12206ST-2A">2a</A>
Hong WP.
Lee K.
Synthesis
2006,
963
<A NAME="RU12206ST-2B">2b</A>
Basavaiah D.
Bakthadoss M.
Pandiaraju S.
Chem. Commun.
1998,
1639
<A NAME="RU12206ST-2C">2c</A>
Chung YM.
Lee HJ.
Hwang SS.
Kim JN.
Bull. Korean Chem. Soc.
2001,
22:
799
<A NAME="RU12206ST-3A">3a</A>
Loh T.-P.
Cao G.-Q.
Pei J.
Tetrahedron Lett.
1998,
39:
1457
<A NAME="RU12206ST-3B">3b</A>
Basavaiah D.
Suguna Hyma R.
Tetrahedron
1996,
52:
1253
<A NAME="RU12206ST-3C">3c</A>
Sugahara T.
Ogasawara K.
Synlett
1999,
419
<A NAME="RU12206ST-3D">3d</A>
Iura Y.
Sugahara T.
Ogasawara K.
Org. Lett.
2001,
3:
291
<A NAME="RU12206ST-3E">3e</A>
Vijaya Anand R.
Baktharaman S.
Singh VK.
Tetrahedron Lett.
2002,
43:
5393
<A NAME="RU12206ST-4A">4a</A>
Walczak MC.
Coleman RS.
Org. Lett.
2005,
7:
2289
<A NAME="RU12206ST-4B">4b</A>
Trauner D.
Miller AK.
Byun DH.
Beaudry CM.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
12019
<A NAME="RU12206ST-5">5</A>
Ayerd TB.
Villieras J.
Amri H.
Tetrahedron
2000,
56:
805
<A NAME="RU12206ST-6">6</A>
Taniguchi M.
Hino T.
Kishi Y.
Tetrahedron Lett.
1986,
39:
4767
<A NAME="RU12206ST-7">7</A>
Zhang C.
Lu X.
Synthesis
1996,
586
<A NAME="RU12206ST-8">8</A>
Wei H.-X.
Gao JJ.
Li G.
Paré PW.
Tetrahedron Lett.
2002,
43:
5677
<A NAME="RU12206ST-9A">9a</A>
Wei H.-X.
Chen D.
Xu X.
Li G.
Paré PW.
Tetrahedron: Asymmetry
2003,
14:
971
<A NAME="RU12206ST-9B">9b</A>
Wei H.-X.
Hu J.
Purkiss DW.
Paré PW.
Tetrahedron Lett.
2003,
44:
949
<A NAME="RU12206ST-9C">9c</A>
Deng G.-H.
Hu H.
Wei H.-X.
Paré PW.
Helv. Chim. Acta
2003,
86:
3510
<A NAME="RU12206ST-9D">9d</A>
Wei H.-X.
Hu J.
Jasoni RL.
Li G.
Paré PW.
Helv. Chim. Acta
2004,
87:
2359
<A NAME="RU12206ST-10">10</A>
AlI3 appeared superior to other metal iodides, such as MgI2 (79% yield, Z/E = 91:9) or TiI4 (<10% yield) in terms of Z/E selectivity and chemical yield when using benzaldehyde as the electrophilic acceptor.
<A NAME="RU12206ST-11A">11a</A>
Chen D.
Timmons C.
Liu J.
Headley A.
Li G.
Eur. J. Org. Chem.
2004,
3330
<A NAME="RU12206ST-11B">11b</A>
Chen D.
Guo L.
Saibabu Kotti SRS.
Li G.
Tetrahedron: Asymmetry
2005,
16:
1757
<A NAME="RU12206ST-12">12</A>
The formation of allenoate was expected from the isolation of β-iodo ethyl acrylate
after aqueous work-up without adding electrophilic acceptors.
<A NAME="RU12206ST-13">13</A>
Experimental Procedure: CH2Cl2 (2.0 mL) was slowly added to an aluminum iodide (0.22 mmol) at -78 °C under N2. Ethyl propiolate (0.24 mmol) and the ketone (0.20 mmol) were added sequentially.
The reaction was monitored by TLC. After the reaction time indicated in Table
[1]
, it was quenched with H2O (2.0 mL) and an aqueous layer was extracted with CH2Cl2. The combined organic phase was dried over Na2SO4 and the solvent was removed under vacuum. The crude product was purified by column
chromatography (CH2Cl2-hexane 3:1) to provide a pure product.
(
Z
)-Ethyl 3-[4-(Trifluoromethyl)phenyl]-3-hydroxy-2-(iodomethylene)butanoate (Entry
13).
IR: 3476, 2983, 1718, 1327, 1124, 845 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.60 (2 H, d, J = 8.0 Hz), 7.54 (2 H, d, J = 8.5 Hz), 7.24 (1 H, s), 4.17 (2 H, m), 4.08 (1 H, br s), 1.70 (3 H, s), 1.16 (3
H, t, J = 7.5 Hz). 13C NMR (125 MHz, CDCl3): δ = 167.74, 149.20, 148.92, 129.95 (q, J = 129.5 Hz), 125.71, 125.53, 124.26 (q, J = 540.8 Hz), 84.81, 77.89, 62.05, 28.94, 13.98. MS: m/e (relative intensity) = 414 (0.2) [M+], 399 (48), 354 (12), 271 (100), 244 (24), 175 (6).
(
Z
)-Ethyl 3-Hydroxy-2-(iodomethylene)-3-(4-methoxy-phenyl)butanoate (Entry 14).
IR: 3464, 2920, 1719, 1509, 1027, 505 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.22 (2 H, d, J = 8.7 Hz), 7.03 (1 H, s), 6.86 (2 H, d, J = 8.7 Hz), 4.12 (2 H, q, J = 6.9 Hz), 3.66 (1 H, s), 1.70 (3 H, s), 1.53 (3 H, s) 1.19 (3 H, t, J = 7.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 168.04, 159.13, 150.59, 136.97, 130.58, 113.82, 83.26, 77.80, 61.78, 55.47,
28.94, 14.09. MS: m/e (relative intensity) = 377 (0.3) [M+], 361 (15), 232 (30), 203 (100), 152 (43).
(
Z
)-Ethyl 3-Hydroxy-2-(iodomethylene)-3-
p
-tolyl-butanoate (Entry 15).
IR: 3490, 2980, 1722, 1298, 1184, 1028, 820 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.29 (2 H, d, J = 8.4 Hz), 7.13 (2 H, d, J = 8.4 Hz), 7.04 (1 H, s), 4.16 (2 H, m), 3.74 (1 H, s), 2.33 (3 H, s), 1.69 (3 H,
s), 1.18 (3 H, t, J = 7.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 167.95, 150.39, 141.96, 137.38, 129.19, 125.26, 83.48, 77.96, 61.76, 28.91,
21.21, 14.04. MS: m/e (relative intensity) = 360 (0.005) [M+], 344 (10), 216 (100), 188 (36), 120 (10).
(
Z
)-Ethyl 3-Hydroxy-2-(iodomethylene)-3-
o
-tolyl-butanoate (Entry 16).
IR: 3498, 2980, 1722, 1295, 1182, 1027, 483 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.52 (1 H, m), 7.17 (3 H, m), 6.82 (1 H, s), 4.15 (2 H, m), 3.39 (1 H, br s),
2.39 (3 H, s), 1.82 (3 H, s), 1.14 (3 H, t, J = 7.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 167.78, 150.96, 141.63, 136.15, 132.49, 128.82, 126.05, 125.96, 81.78, 78.22,
61.52, 28.69, 21.95, 14.12. MS: m/e (relative intensity) = 359 (0.0015) [M+], 216 (100), 144 (33), 120 (13).
(
Z
)-Ethyl 3-Hydroxy-2-(iodomethylene)-3,4,4-trimethylpentanoate (Entry 18).
IR: 3520, 2958, 1723, 1289, 1180, 503 cm-1. 1H NMR (500 MHz, CDCl3): δ = 6.79 (1 H, s) 4.30 (2 H, m), 2.44 (1 H, br s) 1.45 (1 H, s), 1.37 (3 H, t,
J = 7.0 Hz), 0.98 (9 H, s). 13C NMR (125 MHz, CDCl3): δ = 169.14, 152.41, 81.92, 81.08, 61.68, 38.98, 25.81, 24.71, 14.10. MS: m/e (relative intensity) = 326 (0.15) [M+], 309 (100), 272 (30), 226 (13), 146 (10).
(
Z
)-Ethyl 3-Hydroxy-2-(iodomethylene)-3-phenyl-pentanoate (Entry 19).
IR: 3489, 2978, 1721, 1299, 1185, 701 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.33 (5 H, m) 7.00 (1 H, s), 4.14 (2 H, q, J = 7.2 Hz), 3.58 (1 H, s), 2.06 (2 H, m), 1.14 (3 H, t, J = 5.8 Hz), 0.82 (3 H, t, J = 7.2 Hz). 13C NMR (75 MHz, CDCl3): δ = 168.20, 150.37, 142.72, 128.89, 127.62, 126.14, 83.15, 80.31, 61.77, 32.70,
14.04, 7.95. MS: m/e (relative intensity) = 360 (0.01) [M+], 331 (30), 216 (100), 108 (8).