Plant Biol (Stuttg) 2007; 9(2): 215-226
DOI: 10.1055/s-2007-964824
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Antioxidative Defence of Old Growth Beech (Fagus sylvatica) under Double Ambient O3 Concentrations in a Free-Air Exposure System

K. Haberer[*] 1 , K. Herbinger[*] 2 , M. Alexou1 , M. Tausz2 , 3 , H. Rennenberg1
  • 1Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Albert Ludwigs University, Georges-Köhler-Allee 053/054, 79110 Freiburg, Germany
  • 2Institute for Plant Sciences, University Graz, Schubertstraße 51, 8010 Graz, Austria
  • 3School of Forest and Ecosystem Science, University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
Weitere Informationen

Publikationsverlauf

Received: March 16, 2006

Accepted: November 29, 2006

Publikationsdatum:
13. März 2007 (online)

Abstract

In this study the influence of chronic free-air ozone exposure and of different meteorological conditions in the very dry year 2003 and the more humid year 2004 on the antioxidative system in sun and shade leaves of adult Fagus sylvatica trees were investigated. Contents of ascorbate, glutathione, and α-tocopherol, as well as chloroplast pigments were determined under ambient (1 × O3) and double ambient (2 × O3) ozone concentrations. Ozone affected the antioxidative system in June and July, causing lower ascorbate contents in the apoplastic space, a more oxidized redox state of ascorbate and glutathione and an increase in pigment contents predominantly in the shade crown. For all measured parameters significant differences between the years were observed. In 2004 the redox state of ascorbate and glutathione was in a more reduced state and leaf contents of α-tocopherol, pigments of the xanthophyll cycle, β-carotene, lutein, neoxanthin, and α-carotene were lower compared to 2003. Contents of total glutathione and chlorophyll a + b were increased in the second year. These results indicate a strong influence of the drought conditions in 2003 on the antioxidative system of beech overruling the ozone effects. Shade leaves showed lower contents of ascorbate in both years and the redox states of ascorbate and glutathione were more oxidized compared to sun leaves. Contents of photoprotective and accessory pigments generally were enhanced and the de-epoxidation state of the xanthophyll cycle was lower in the shade compared to the sun crown. Exhibiting less antioxidants shade leaves seem to be more sensitive against ozone than sun leaves.

References

  • 1 Alexou M., Hofer N., Liu X., Rennenberg H., Haberer K.. Significance of ozone exposure for inter-annual differences in primary metabolites of old-growth beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) trees in a mixed forest stand.  Plant Biology. (2007);  9 227-241
  • 2 Apel K., Hirt H.. Reactive oxygen species: metabolism, oxidative stress, and signal transduction.  Annual Review of Plant Biology. (2004);  55 373-399
  • 3 Asada K.. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.  Annual Review of Plant Physiology and Plant Molecular Biology. (1999);  50 601-639
  • 4 Baier M., Kandlbinder A., Golldack D., Dietz K. J.. Oxidative stress and ozone: perception, signalling and response.  Plant, Cell and Environment. (2005);  28 1012-1020
  • 5 Buettner G. R., Jurkiewicz B. A.. Catalytic metals, ascorbate and free radicals: combinations to avoid.  Radiation Research. (1996);  145 532-541
  • 6 Burkey K. O., Eason G.. Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast.  Physiologia Plantarum. (2002);  114 387-394
  • 7 Calatayud A., Iglesias D. J., Talon M., Barreno E.. Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation.  Plant Physiology and Biochemistry. (2003);  41 839-845
  • 8 Calatayud A., Iglesias D. J., Talón M., Barreno E.. Response of spinach leaves (Spinacia oleracea L.) to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation.  Photosynthetica. (2004);  42 23-29
  • 9 Calzada I., Mesanza J., Casado H., Castillo F. J.. Biochemical changes in needles of Pinus radiata D. Don trees in relationship to long-term ozone exposure indices.  Environmental Pollution. (2001);  114 325-335
  • 10 Castillo F. J., Miller P. R., Greppin H.. Extracellular biochemical markers of photochemical oxidant air-pollution damage to Norway spruce.  Experientia. (1987);  43 111-115
  • 11 D'Haese D., Vandermeiren K., Asard H., Horemans N.. Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L.  Plant, Cell and Environment. (2005);  28 623-632
  • 12 Demmig-Adams B.. Carotenoids and photoprotection in plants - a role for the xanthophyll zeaxanthin.  Biochimica et Biophysica Acta. (1990);  1020 1-24
  • 13 Demmig-Adams B., Adams W. W.. Chlorophyll and carotenoid composition in leaves of Euonymus kiautschovicus acclimated to different degrees of light stress in the field.  Australian Journal of Plant Physiology. (1996);  23 649-659
  • 14 Dietz K. J.. Plant peroxiredoxins.  Annual Review of Plant Biology. (2003);  54 93-107
  • 15 Dipierro S., Borraccino G.. Dehydroascorbate reductase from potato tubers.  Phytochemistry. (1991);  30 427-429
  • 16 Ederli L., Pasqualini S., Batini P., Antonielli M.. Photoinhibition and oxidative stress: effects on xanthophyll cycle, scavenger enzymes and abscisic acid content in tobacco plants.  Journal of Plant Physiology. (1997);  151 422-428
  • 17 Esterbauer H., Grill D.. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies.  Plant Physiology. (1978);  61 119-121
  • 18 Foreman J., Demidchik V., Bothwell J. H. F., Mylona P., Miedema H., Torres M. A., Linstead P., Costa S., Brownlee C., Jones J. D. G., Davies J. M., Dolan L.. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.  Nature. (2003);  422 442-446
  • 19 Foyer C. H., Halliwell B.. Presence of glutathione and glutathione reductase in chloroplasts - proposed role in ascorbic acid metabolism.  Planta. (1977 a);  133 21-25
  • 20 Foyer C. H., Halliwell B.. Purification and properties of dehydroascorbate reductase from Spinach leaves.  Phytochemistry. (1977 b);  16 1347-1350
  • 21 Foyer C. H., Lelandais M.. The role of ascorbate in the regulation of photosynthesis. Yamamoto, H. Y. and Smith, C. M., eds. Photosynthesis Responses to the Environment. Rockville, Maryland; Society of Plant Physiologists (1993): 88-101
  • 22 Foyer C. H., Lelandais M., Kunert K. J.. Photooxidative stress in plants.  Physiologia Plantarum. (1994);  92 696-717
  • 23 Foyer C. H., Noctor G.. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context.  Plant, Cell and Environment. (2005);  28 1056-1071
  • 24 Foyer C. H., Noctor G.. Oxygen processing in photosynthesis: regulation and signalling.  New Phytologist. (2000);  146 359-388
  • 25 García-Plazaola J., Becerril J. M.. Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a Mediterranean climate: implications for tree decline diagnosis.  Australian Journal of Plant Physiology. (2001);  28 225-232
  • 26 García-Plazaola J. I., Artetxe U., Becerril J. M.. Diurnal changes in antioxidant and carotenoid composition in the Mediterranean schlerophyll tree Quercus ilex (L) during winter.  Plant Science. (1999);  143 125-133
  • 27 García-Plazaola J. I., Becerril J. M.. Photoprotection mechanisms in European beech (Fagus sylvatica L.) seedlings from diverse climatic origins.  Trees - Structure and Function. (2000);  14 339-343
  • 28 García-Plazaola J. I., Becerril J. M., Hernandez A., Niinemets U., Kollist H.. Acclimation of antioxidant pools to the light environment in a natural forest canopy.  New Phytologist. (2004);  163 87-97
  • 29 García-Plazaola J. I., Hernandez A., Becerril J. M.. Antioxidant and pigment composition during autumnal leaf senescence in woody deciduous species differing in their ecological traits.  Plant Biology. (2003);  5 557-566
  • 30 Haberer K., Jaeger L., Rennenberg H.. Seasonal patterns of ascorbate in the needles of Scots pine (Pinus sylvestris L.) trees: correlation analyses with atmospheric O3 and NO2 gas mixing ratios and meteorological parameters.  Environmental Pollution. (2006);  139 224-231
  • 31 Hansen U., Schneiderheinze J., Stadelmann S., Rank B.. The alpha-tocopherol content of leaves of pedunculate oak (Quercus robur L.) - variation over the growing season and along the vertical light gradient in the canopy.  Journal of Plant Physiology. (2003);  160 91-96
  • 32 Herbinger K., Tausz M., Wonisch A., Soja G., Sorger A., Grill D.. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars.  Plant Physiology and Biochemistry. (2002);  40 691-696
  • 33 Herbinger K., Then C., Löw M., Haberer K., Alexou M., Koch N., Remele K., Heerdt C., Grill D., Rennenberg H., Häberle K. H., Matyssek R., Tausz M., Wieser G.. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure.  Environmental Pollution. (2005);  137 476-482
  • 34 Herschbach C.. Whole plant regulation of sulfur nutrition of deciduous trees - influences of the environment.  Plant Biology. (2003);  5 233-244
  • 35 Hörtensteiner S., Feller U.. Nitrogen metabolism and remobilization during senescence.  Journal of Experimental Botany. (2002);  53 927-937
  • 36 Horton P., Ruban A. V., Walters R. G.. Regulation of light harvesting in green plants.  Annual Review of Plant Physiology and Plant Molecular Biology. (1996);  47 655-684
  • 37 Jehnes S., Betz G., Bahnweg G., Haberer K., Sandermann H., Rennenberg H.. Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees.  Plant Biology. (2007);  9 253-264
  • 38 Jin Y. H., Tao D. L., Hao Z. Q., Ye J., Du Y. J., Liu H. L., Zhou Y. B.. Environmental stresses and redox status of ascorbate.  Acta Botanica Sinica. (2003);  45 795-801
  • 39 Kalinova J., Triska J., Vrchotova N.. Distribution of vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum Moench).  Journal of Agricultural and Food Chemistry. (2006);  54 5330-5335
  • 40 Kanofsky J. R., Sima P. D.. Singlet oxygen generation from the reaction of ozone with plant leaves.  Journal of Biological Chemistry. (1995);  270 7850-7852
  • 41 Knörzer O. C., Durner J., Boger P.. Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress.  Physiologia Plantarum. (1996);  97 388-396
  • 42 Laisk A., Kull O., Moldau H.. Ozone concentration in leaf intercellular air spaces is close to zero.  Plant Physiology. (1989);  90 1163-1167
  • 43 Langebartels C., Kangasjärvi J.. Ethylen and jasmonate as regulators of cell death in desease resistance. Sandermann, H., ed. Molecular Ecotoxicology of Plants. Berlin, Heidelberg; Springer Verlag (2004): 75-109
  • 44 Lichtenthaler H. K.. Formation of excess plastidquinones in leaves of Ficus elastica Roxb.  Zeitschrift für Naturforschung Part B - Chemie Biochemie Biophysik Biologie. (1969);  24 1461-1466
  • 45 Logan B. A., Grace S. C., Adams W. W., Demmig-Adams B.. Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments.  Oecologia. (1998);  116 9-17
  • 89 Löw M., Herbinger K., Nunn A. J., Häberle K.‐H., Leuchner M., Heerdt C., Werner H., Wipfler P., Pretzsch H., Tausz M., Matyssek R.. Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica).  Trees. (2006);  20 539-548
  • 46 Lütz C., Anegg S., Gerant D., Alaoui-Sossé B., Gérard J., Dizengremel P.. Beech trees exposed to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity.  Physiologia Plantarum. (2000);  109 252-259
  • 47 Luwe M.. Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L) leaves: seasonal variations and responses to changing ozone concentrations in air.  Plant, Cell and Environment. (1996);  19 321-328
  • 48 Luwe M., Heber U.. Ozone detoxification in the apoplasm and symplasm of spinach, broad bean and beech leaves at ambient and elevated concentrations of ozone in air.  Planta. (1995);  197 448-455
  • 49 Luwe M. W. F., Takahama U., Heber U.. Role of ascorbate in detoxifying ozone in the apoplast of Spinach (Spinacia oleracea L) leaves.  Plant Physiology. (1993);  101 969-976
  • 50 Matyssek R., Innes J. L.. Ozone - a risk factor for trees and forests in Europe?.  Water, Air, and Soil Pollution. (1999);  116 199-226
  • 51 Matyssek R., Le Thiec D., Löw M., Dizengremel P., Nunn A. J., Häberle K. H.. Interactions between drought and O3 stress in forest trees.  Plant Biology. (2006);  8 11-17
  • 52 Mittler R., Vanderauwera S., Gollery M., Van Breusegem F.. Reactive oxygen gene network of plants.  Trends in Plant Science. (2004);  9 490-498
  • 53 Miyake C., Cao W. H., Asada K.. Molecular properties of thylakoid bound ascorbate peroxidase in Spinach chloroplast.  Photosynthesis Research. (1992);  34 155
  • 54 Mudway I. S., Kelly F. J.. Modeling the interactions of ozone with pulmonary epithelial lining fluid antioxidants.  Toxicology and Applied Pharmacology. (1998);  148 91-100
  • 55 Munné-Bosch S.. The role of alpha-tocopherol in plant stress tolerance.  Journal of Plant Physiology. (2005);  162 743-748
  • 56 Munné-Bosch S., Alegre L.. The function of tocopherols and tocotrienols in plants.  Critical Reviews in Plant Sciences. (2002);  21 31-57
  • 57 Munné-Bosch S., Penuelas J.. Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions.  Plant Science. (2004);  166 1105-1110
  • 58 Noctor G.. Metabolic signalling in defence and stress: the central roles of soluble redox couples.  Plant, Cell and Environment. (2006);  29 409-425
  • 59 Noctor G., Foyer C. H.. Ascorbate and glutathione: keeping active oxygen under control.  Annual Review of Plant Physiology and Plant Molecular Biology. (1998);  49 249-279
  • 60 Nunn A. J., Reiter I. M., Häberle K. H., Werner H., Langebartels C., Sandermann H., Heerdt C., Fabian P., Matyssek R.. “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech.  Phyton. (2002);  42 105-119
  • 61 Okamura M.. An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma.  Clinica Chimica Acta. (1980);  103 259-268
  • 62 Padu E., Kollist H., Tulva I., Oksanen E., Moldau H.. Components of apoplastic ascorbate use in Betula pendula leaves exposed to CO2 and O3 enrichment.  New Phytologist. (2005);  165 131-141
  • 63 Pasqualini S., Batini P., Ederli L., Porceddu A., Piccioni C., De Marchis F., Antonielli M.. Effects of short-term ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase.  Plant, Cell and Environment. (2001);  24 245-252
  • 64 Polle A., Baumbusch L. O., Oschinski C., Eiblmeier M., Kuhlenkamp V., Vollrath B., Scholz F., Rennenberg H.. Growth and protection against oxidative stress in young clones and mature spruce trees (Picea abies L.) at high altitudes.  Oecologia. (1999);  121 149-156
  • 65 Polle A., Rennenberg H.. Field studies on Norway spruce trees at high altitudes. 2. Defense systems against oxidative stress in needles.  New Phytologist. (1992);  121 635-642
  • 66 Polle A., Schwanz P., Rudolf C.. Developmental and seasonal changes of stress responsiveness in beech leaves (Fagus sylvatica L.).  Plant, Cell and Environment. (2001);  24 821-829
  • 67 Polle A., Wieser G., Havranek W. M.. Quantification of ozone influx and apoplastic ascorbate content in needles of Norway spruce trees (Picea abies L. Karst) at high altitude.  Plant, Cell and Environment. (1995);  18 681-688
  • 68 Proietti S., Moscatello S., Leccese A., Colla G., Battistelli A.. The effect of growing spinach (Spinacia oleracea L.) at two light intensities on the amounts of oxalate, ascorbate and nitrate in their leaves.  Journal of Horticultural Science and Biotechnology. (2004);  79 606-609
  • 69 Ranieri A., Petacco F., Castagna A., Soldatini G. F.. Redox state and peroxidase system in sunflower plants exposed to ozone.  Plant Science. (2000);  159 159-167
  • 70 Scebba F., Soldatini G., Ranieri A.. Ozone differentially affects physiological and biochemical responses of two clover species, Trifolium repens and Trifolium pratense.  Environmental Pollution. (2003);  123 209-216
  • 71 Schroeder J. I., Kwak J. M., Allen G. J.. Guard cell abscisic acid signalling and engineering drought hardiness in plants.  Nature. (2001);  410 327-330
  • 72 Schupp R., Rennenberg H.. Diurnal changes in the glutathione content of spruce needles (Picea abies L).  Plant Science. (1988);  57 113-117
  • 73 Šircelj H., Tausz M., Grill D., Batiè F.. Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought.  Journal of Plant Physiology. (2005);  162 1308-1318
  • 74 Smirnoff N.. The function and metabolism of ascorbic acid in plants.  Annals of Botany. (1996);  78 661-669
  • 75 Smirnoff N.. Ascorbate biosynthesis and function in photoprotection.  Philosophical Transactions of the Royal Society of London Series B - Biological Sciences. (2000);  355 1455-1464
  • 76 Sofo A., Tuzio A. C., Dichio B., Xiloyannis C.. Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids.  Plant Science. (2005);  169 403-412
  • 77 Strohm M., Eiblmeier M., Langebartels C., Jouanin L., Polle A., Sandermann H., Rennenberg H.. Responses of antioxidative systems to acute ozone stress in transgenic poplar (Populus tremula × P. alba) over-expressing glutathione synthetase or glutathione reductase.  Trees. (2002);  16 262-273
  • 78 Strohm M., Jouanin L., Kunert K. J., Pruvost C., Polle A., Foyer C. H., Rennenberg H.. Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × Populus alba) overexpressing glutathione synthetase.  The Plant Journal. (1995);  7 141-145
  • 79 Takahama U., Oniki T.. Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of Spinach leaves by ascorbate.  Plant and Cell Physiology. (1992);  33 379-387
  • 80 Tausz M., Gonzalez-Rodriguez A. M., Wonisch A., Peters J., Grill D., Morales D., Jimenez M. S. J.. Photostress, photoprotection, and water soluble antioxidants in the canopies of five Canarian laurel forest tree species during a diurnal course in the field.  Flora. (2004 a);  199 110-119
  • 81 Tausz M., Olszyk D. M., Monschein S., Tingey D. T.. Combined effects of CO2 and O3 on antioxidative and photoprotective defense systems in needles of ponderosa pine.  Biologia Plantarum. (2004 b);  48 543-548
  • 82 Tausz M., Šircelj H., Grill D.. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?.  Journal of Experimental Botany. (2004 c);  55 1955-1962
  • 83 Tausz M., Wonisch A., Grill D., Morales D., Jimenez M. S.. Measuring antioxidants in tree species in the natural environment: from sampling to data evaluation.  Journal of Experimental Botany. (2003);  54 1505-1510
  • 84 Turcsányi E., Lyons T., Plöchl M., Barnes J.. Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (Vicia faba L.).  Journal of Experimental Botany. (2000);  51 901-910
  • 85 Wellburn F. A. M., Lau K. K., Milling P. M. K., Wellburn A. R.. Drought and air pollution affect nitrogen cycling and free radical scavenging in Pinus halepensis (Mill).  Journal of Experimental Botany. (1996);  47 1361-1367
  • 86 Werner H., Fabian P.. Free-air fumigation of mature trees - a novel system for controlled ozone enrichment in grown-up beech and spruce canopies.  Environmental Science and Pollution Research. (2002);  9 117-121
  • 87 Wonisch A., Tausz M., Müller M., Soja G., Grill D.. Ozone-induced long-term effects on chromosomal aberration rates in root-tip meristems of spruce trees do not correspond to changes in tissue antioxidant status.  Phyton. (2003);  43 147-160
  • 88 Wustman B. A., Oksanen E., Karnosky D. F., Noormets A., Isebrands J. G., Pregitzer K. S., Hendrey G. R., Sober J., Podila G. K.. Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3?.  Environmental Pollution. (2001);  115 473-481

1 These authors contributed equally to the work

K. Haberer

Institute of Forest Botany and Tree Physiology
Chair of Tree Physiology
Albert Ludwigs University

Georges-Köhler-Allee 053/054

79110 Freiburg

Germany

eMail: kristine.haberer@ctp.uni-freiburg.de

Guest Editor: R. Matyssek

    >