Int J Sports Med 2007; 28(10): 880-886
DOI: 10.1055/s-2007-964900
Clinical Sciences

© Georg Thieme Verlag KG Stuttgart · New York

Mechanical Efficiency and Wheelchair Performance during and after Spinal Cord Injury Rehabilitation

S. de Groot1 , 2 , A. J. Dallmeijer3 , F. W. A. van Asbeck4 , M. W. M. Post5 , J. B. J. Bussmann6 , L. van der Woude1 , 2
  • 1DNO, Rehabilitation Center Amsterdam, Amsterdam, Netherlands
  • 2Institute for Clinical and Fundamental Human Movement Sciences, Faculty of Human Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
  • 3Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, Netherlands
  • 4Spinal Cord Unit, Rehabilitation Center De Hoogstraat, Utrecht, Netherlands
  • 5Research, Rehabilitation Center De Hoogstraat, Utrecht, Netherlands
  • 6Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
Further Information

Publication History

accepted after revision August 22, 2006

Publication Date:
13 April 2007 (online)

Abstract

The purpose of the present study was to investigate whether mechanical efficiency (ME) relates to wheelchair propulsion capacity and wheelchair performance tasks during and after rehabilitation of people with a spinal cord injury (SCI). Eighty participants with a SCI were tested during rehabilitation (3 ×) and 1 year after discharge. Two 3-minute submaximal exercise blocks, a maximal wheelchair exercise test, and four wheelchair performance tasks were performed. ME, peak power output (POpeak), the sum of the performance times of a 15-m sprint and figure-of-eight, and the heart rate reserve (%HRR) during 10 s of wheelchair propulsion on a 3 % and 6 % slope were calculated. The relationship between ME and POpeak, %HRR and performance time was tested with a multilevel regression analysis. ME showed a significant relationship with POpeak (p ≤ 0.002). A 1 % higher ME related to a 1.6 - 2.2 W higher POpeak. ME of exercise block 2 was related to the sum of the performance times of a 15-m sprint and figure-of-eight; the tests were performed faster by participants with a higher ME. No relationship was found between ME and %HRR during wheelchair propulsion on a slope. ME showed a significant effect on wheelchair propulsion capacity and wheelchair performance time during and 1 yr after SCI rehabilitation although the isolated effect of ME is small.

References

  • 1 ACSM .ACSM's Guidelines for Exercise Testing and Prescription. 6th edn. Philadelphia; Lippincott, Williams, & Wilkins 2000
  • 2 Beekman C E, Miller-Porter L, Schoneberger M. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.  Phys Ther. 1999;  79 146-158
  • 3 Bougenot M P, Tordi N, Betik A C, Martin X, Le Foll D, Parratte B, Lonsdorfer J, Rouillon J D. Effects of a wheelchair ergometer training programme on spinal cord-injured persons.  Spinal Cord. 2003;  41 451-456
  • 4 Bourdin M, Messonnier L, Hager J P, Lacour J R. Peak power output predicts rowing ergometer performance in elite male rowers.  Int J Sports Med. 2004;  25 368-373
  • 5 Cooper R A. The contribution of selected anthropometric and physiological variables to 10K performance of wheelchair racers: a preliminary study.  J Rehabil Res Dev. 1992;  29 29-34
  • 6 Dallmeijer A J, Kilkens O J, Post M W, de Groot S, Angenot E L, van Asbeck F W, Nene A V, van der Woude L H. Hand-rim wheelchair propulsion capacity during rehabilitation of persons with spinal cord injury.  J Rehabil Res Dev. 2005;  42 (Suppl 1) 55-63
  • 7 Dallmeijer A J, van der Woude L H, Hollander A P, van As H H. Physical performance during rehabilitation in persons with spinal cord injuries.  Med Sci Sports Exerc. 1999;  31 1330-1335
  • 8 Dallmeijer A J, van der Woude L H, Veeger H E, Hollander A P. Effectiveness of force application in manual wheelchair propulsion in persons with spinal cord injuries.  Am J Phys Med Rehabil. 1998;  77 213-221
  • 9 Dallmeijer A J, Zentgraaff I D, Zijp N I, van der Woude L H. Submaximal physical strain and peak performance in handcycling versus handrim wheelchair propulsion.  Spinal Cord. 2004;  42 91-98
  • 10 De Groot S, Veeger H EJ, Hollander A P, van der Woude L HV. Effect of wheelchair stroke pattern on mechanical efficiency.  Am J Phys Med Rehabil. 2004;  83 640-649
  • 11 De Groot S, Dallmeijer A J, Kilkens O J, van Asbeck F W, Nene A V, Angenot E L, Post M W, van der Woude L H. Course of gross mechanical efficiency in handrim wheelchair propulsion during rehabilitation of people with spinal cord injury: a prospective cohort study.  Arch Phys Med Rehabil. 2005;  86 1452-1460
  • 12 De Groot S, Dallmeijer A J, Post M W, van Asbeck F W, Nene A V, Angenot E L, van der Woude L H. Demographics of the Dutch multicenter prospective cohort study “restoration of mobility in spinal cord injury rehabilitation”.  Spinal Cord Epub. 2006;  44 668-675
  • 13 De Groot S, Veeger H EJ, Hollander A P, van der Woude L HV. Consequence of feedback-based learning of an effective hand rim wheelchair force production on mechanical efficiency.  Clin Biomech (Bristol, Avon). 2002;  17 219-226
  • 14 De Groot S, Veeger H EJ, Hollander A P, van der Woude L HV. Wheelchair propulsion technique and mechanical efficiency after 3 wk of practice.  Med Sci Sports Exerc. 2002;  34 756-766
  • 15 Garby L, Astrup A. The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis.  Acta Physiol Scand. 1987;  129 443-444
  • 16 Goosey V L, Campbell I G, Fowler N E. Effect of push frequency on the economy of wheelchair racers.  Med Sci Sports Exerc. 2000;  32 174-181
  • 17 Hintzy F, Tordi N. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.  Clin Biomech (Bristol, Avon). 2004;  19 343-349
  • 18 Hjeltnes N, Wallberg-Henriksson H. Improved work capacity but unchanged peak oxygen uptake during primary rehabilitation in tetraplegic patients.  Spinal Cord. 1998;  36 691-698
  • 19 Horowitz J F, Sidossis L S, Coyle E F. High efficiency of type I muscle fibers improves performance.  Int J Sports Med. 1994;  15 152-157
  • 20 Janssen T W, van Oers C A, Rozendaal E P, Willemsen E M, Hollander A P, van der Woude L H. Changes in physical strain and physical capacity in men with spinal cord injuries.  Med Sci Sports Exerc. 1996;  28 551-559
  • 21 Janssen T W, van Oers C A, van Kamp G J, TenVoorde B J, van der Woude L H, Hollander A P. Coronary heart disease risk indicators, aerobic power, and physical activity in men with spinal cord injuries.  Arch Phys Med Rehabil. 1997;  78 697-705
  • 22 Karvonen M, Kentalac E, Mustala O. The Effects of training on heart rate. A longitudinal study.  Ann Med Exp Biol Fenn. 1957;  35 307-315
  • 23 Kilkens O J, Dallmeijer A J, De Witte L P, van der Woude L H, Post M W. The wheelchair circuit: construct validity and responsiveness of a test to assess manual wheelchair mobility in persons with spinal cord injury.  Arch Phys Med Rehabil. 2004;  85 424-431
  • 24 Kilkens O J, Post M W, Dallmeijer A J, van Asbeck F W, van der Woude L H. Relationship between manual wheelchair skill performance and participation of persons with spinal cord injuries 1 year after discharge from inpatient rehabilitation.  J Rehabil Res Dev. 2005;  42 (Suppl 1) 65-73
  • 25 Post M W, van Asbeck F W, van Dijk A J, Schrijvers A J. Services for spinal cord injured: availability and satisfaction.  Spinal Cord. 1997;  35 109-115
  • 26 Shiomi T, Maruyama H, Saito A, Umemura M. Physiological responses and mechanical efficiency during different types of ergometric exercise.  J Phys Ther Sci. 2000;  12 67-73
  • 27 Stainbsy W N, Gladden L B, Barclay J K, Wilson B A. Exercise efficiency: validity of base-line subtractions.  J Appl Physiol. 1980;  48 518-522
  • 28 Tropp H, Samuelsson K, Jorfeldt L. Power output for wheelchair driving on a treadmill compared with arm crank ergometry.  Br J Sports Med. 1997;  31 41-44
  • 29 Twisk J WR. Applied Longitudinal Data Analysis for epidemiology. A Practical Guide. Cambridge, England; Cambridge University Press 2003
  • 30 van der Woude L HV, de Groot G, Hollander A P, van Ingen Schenau G J, Rozendal R H. Wheelchair ergonomics and physiological testing of prototypes.  Ergonomics. 1986;  29 1561-1573
  • 31 van der Woude L HV, Hendrich K M, Veeger H E, van Ingen Schenau G J, Rozendal R H, de Groot G, Hollander A P. Manual wheelchair propulsion: effects of power output on physiology and technique.  Med Sci Sports Exerc. 1988;  20 70-78
  • 32 van der Woude L HV, Veeger D J, Rozendal R H, Sargeant T J. Seat height in handrim wheelchair propulsion.  J Rehabil Res Dev. 1989;  26 31-50
  • 33 van der Woude L HV, Veeger H E, Rozendal R H, Sargeant A J. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.  Eur J Appl Physiol Occup Physiol. 1989;  58 625-632

PhD Sonja de Groot

DNO
Rehabilitation Center Amsterdam
Institute for Clinical and Fundamental Human Movement Sciences, Faculty of Human Movement Sciences
Vrije Universiteit

Overtoom 283

1054 HW Amsterdam

Netherlands

Van der Boechorststraat 9

1081 BT Amsterdam

Netherlands

Phone: + 31 2 06 07 17 49

Email: s.de.groot@fbw.vu.nl

    >