Plant Biol (Stuttg) 2007; 9(4): 534-540
DOI: 10.1055/s-2007-965042
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Phylogenetic Background of Orange Lily (Lilium bulbiferum s.l.) Cultivars from a Genetically Isolated Environment

V.-P. Pelkonen1 , A. Niittyvuopio1 , A. M. Pirttilä1 , K. Laine2 , A. Hohtola1
  • 1Department of Biology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
  • 2Thule Institute, P.O. Box 7300, 90014 Oulu, Finland
Further Information

Publication History

Received: December 7, 2006

Accepted: February 6, 2007

Publication Date:
31 May 2007 (online)

Abstract

Domesticated Orange lily (Lilium bulbiferum s.l.) cultivars do not typically produce seeds, and Orange lily is not native to Finland. Therefore, back crossing of the cultivars with wild species has not been possible. Genetic variability and genuineness of eight Finnish traditionally-grown Orange lily cultivars was studied. RAPD patterns were compared between the cultivars and genuine Orange lily (Lilium bulbiferum L.), and a related Dauricum group. The results showed partition of tested genotypes into four groups, L. canadense as the outgroup. The cultivars were divided into two subgroups where the trait to form bulbils was characteristic to subgroup I. The cultivated strains differed from each other as much as from the seedling strains, but were genetically closer to genuine Orange lily than the Dauricum group. This indicates that the cultivars are genuine forms of Orange lily species. The special morphological features of the cultivars have likely been formed during centuries-long genetic isolation from natural populations.

References

  • 1 Ben Fadhel N., Boussaid M.. Genetic diversity in wild Tunisian populations of Mentha pulegium L. (Lamiaceae).  Genetic Resources and Crop Evolution. (2004);  51 309-321
  • 2 Bussell J. D.. The distribution of random amplified polymorphic DNA (RAPD) diversity among populations of Isotoma petraea (Lobeliaceae).  Molecular Ecology. (1999);  8 775-789
  • 32 Chandler S. F., Lu C. Y.. Biotechnology in ornamental horticulture.  In Vitro Cellular and Developmental Biology - Plant. (2005);  41 591-601
  • 3 Doyle J. J., Doyle J. L.. Isolation of plant DNA from fresh tissue.  BRL Focus. (1990);  12 13-15
  • 4 Frankham R., Ballou J. D., Briscoe D. A.. Introduction to Conservation Genetics. Cambridge University, UK; Cambridge University Press (2002)
  • 5 Friesen N., Blattner F. R.. RAPD analysis reveals geographic differentiations within Allium schoenoprasum L. (Alliaceae).  Plant Biology. (2000);  2 297-305
  • 6 Galderisi U., Cipllaro M., Di Bernardo G., De Masi L., Galano G., Cascino A.. Identification of hazelnut (Corylus avellana) cultivars by RAPD analysis.  Plant Cell Reports. (1999);  18 652-655
  • 7 Gower J. C., Ross G. J. S.. Minimum spanning trees and single linkage cluster analysis.  Applied Statistics. (1969);  18 54-64
  • 8 He T., Rao G., You R., Ge S., Zhang D.. Genetic diversity of widespread Ophiopogon intermedius (Liliaceae s.l.): a comparison with endangered O. xylorrhizus. .  Biological Conservation. (2000);  96 253-257
  • 9 Huson D. H., Bryant M.. Application of phylogenetic networks in evolutionary studies.  Molecular Biology and Evolution. (2006);  23 254-267
  • 10 Jones C. J., Edwards K. J., Castaglione S., Winfield M. O., Sala F., Van De Wiel C., Bredemeijer G., Vosman B., Matthes M., Daly A., Brettschneider R., Bettini P., Buiatti M., Maestri E., Malcevschi A., Marmiroli N., Aert R., Volckaert G., Rueda J., Linacero R., Vazquez A., Karp A.. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories.  Molecular Breeding. (1997);  3 381-390
  • 11 Krznaric D., Levcopoulos C.. Fast algorithms for complete linkage clustering.  Discrete and Computational Geometry. (1998);  19 131-145
  • 12 Lanham P. G., Brennan R. M.. Genetic characterization of gooseberry (Ribes grossularia subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers.  Journal of Horticultural Science and Biotechnology. (1999);  74 361-366
  • 33 Liu Y. C., Lin S. H., Lai H. M., Jeng S. T.. Detection of genetically modified soybean and its product tou-kan by polymerase chain reaction with dual pairs of DNA primers.  European Food Research and Technology. (2005);  221 725-730
  • 13 Matsumoto S., Fukui H.. Identification of rose cultivars and clonal plants by random amplified polymorphic DNA.  Scientia Horticulturae. (1996);  67 49-54
  • 14 McMillan C., Weiler J.. Cytogeography of Panicum virgatum in Central North America.  American Journal of Botany. (1959);  46 590-593
  • 15 Meagher T. R., Vassiliadis C.. Phenotypic impacts of repetitive DNA in flowering plants.  New Phytologist. (2005);  168 71-80
  • 16 Michener C. D., Sokal R. R.. A quantitative approach to a problem in classification.  Evolution. (1957);  11 130-162
  • 17 Murashige T., Skoog F.. A revised medium for rapid growth and bioassays with tobacco tissue cultures.  Physiologia Plantarum. (1962);  15 473-497
  • 18 Ohri D.. Climate and growth form: the consequences for genome size in plants.  Plant Biology. (2005);  7 449-458
  • 19 Palombi M. A., Damiano C.. Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev).  Plant Cell Reports. (2002);  20 1061-1066
  • 20 Pelkonen V.-P., Kauppi A.. The effect of light and auxins on the regeneration of lily (Lilium regale Wil.) cells by somatic embryogenesis and organogenesis.  International Journal of Plant Sciences. (1999);  160 483-490
  • 21 Persson H. A., Lundquist K., Nybom H.. RAPD analysis of genetic variation within and among populations of Turk's-cap lily (Lilium martagon L.).  Hereditas. (1998);  128 213-220
  • 22 Saitou N., Nei M.. The neighbor-joining method: a new method for reconstructing phylogenetic trees.  Molecular Biology and Evolution. (1987);  4 406-425
  • 23 Saitou N., Imanishi T.. Relative efficiencies of the fitch-margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree.  Molecular Biology and Evolution. (1989);  6 514-525
  • 24 Siljak-Yakovlev S., Peccenini S., Muratovic E., Zoldos V., Robin O., Valles J.. Chromosomal differentiation and genome size in three European mountain Lilium species.  Plant Systematics and Evolution. (2003);  236 165-173
  • 25 Stewart C. N., Porter D. M.. RAPD profiling in biological conservation: an application to estimating clonal variation in rare and endangered Iliamma in Virginia.  Biological Conservation. (1995);  74 135-142
  • 26 Wallner E., Weising K., Rompf R., Kahl G., Kopp B.. Oligonucleotide fingerprinting and RAPD analysis of Achillea species: characterization and long-term monitoring of micropropagated clones.  Plant Cell Reports. (1996);  15 647-652
  • 27 Wen C. S., Hsiao J. Y.. Altitudinal genetic differentiation and diversity of Taiwan lily (Lilium longiflorum var. formosanum; Liliaceae) using RAPD markers and morphological characters.  International Journal of Plant Sciences. (2001);  162 287-295
  • 28 Wolfe A. D., Liston A.. Contributions of PCR-based methods to plant systematics and evolutionary biology. Soltis, D. E., Soltis, P. S., and Doyle, J. J., eds. Molecular Systematics of Plants. II. DNA Sequencing. Boston; Kluwer (1998): 43-86
  • 29 Woodcock H. B. D., Stearn W. T.. Lilies of the World, 2nd ed. New York; Country Life Ltd. (1950)
  • 30 Wright S.. Evolution and the Genetics of Populations, Vol. 3. Experimental Results and Evolutionary Deductions. Chicago; University of Chicago Press (1977)
  • 31 Yamagishi M.. Detection of section-specific random amplified polymorphic DNA (RAPD) markers in Lilium.  Theoretical and Applied Genetics. (1995);  91 830-835

A. M. Pirttilä

Department of Biology
University of Oulu

P.O. Box 3000

90014 Oulu

Finland

Email: am.pirttila@oulu.fi

Editor: F. Salamini