Abstract
We assessed the pollen hydration, the pollen germination, and the stigma papilla penetration
of Crocus vernus subsp. vernus (Iridaceae) after 2 h fumigations with O3 , NO2 , and CO gases within humidified (90 - 100 % RH) box experiments. When the pollen
and the pistil were separately fumigated, the pollen retained the capacity to emit
a tube which penetrated papilla, and the stigma papillae retained the receptivity;
when the pistils were first pollinated and then fumigated, the capacity of pollen
to hydrate was not affected, but the germination was significantly reduced. The vulnerability
to gases became evident at 0.3 ppm O3 , 0.2 ppm NO2 , and 0.5 ppm CO. The inhibition curves as a function of the gas concentrations were
of an exponential type, and they saturated at 2 ppm NO2 , 25 ppm CO, and 0.5 ppm O3 , with germination percentages of 17 %, 27 %, and 60 %, respectively. Both the pollen
germination and the papilla penetration were fully restored by prolonging for 60 -
90 min the incubation at 90 - 100 % RH, after the cessation of fumigations. The vulnerability
of the pollen-papilla system is discussed.
Key words
Crocus vernus ssp. vernus
- nitrogen dioxide - carbon monoxide - ozone - pollen hydration and germination.
References
1 Bell J. N. B., Treshow M.. Air Pollution and Plant Life. Chichester, UK; J. Wiley
and Sons (2002): 1-480
2
Black V. J., Black C. R., Roberts J. A., Stewart C. A..
Impact of ozone on the reproductive development of plants.
New Phytologist.
(2000);
147
421-447
3
Brown G. C., Borutaite V..
Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and
S-nitrosothiols.
Biochimica et Biophysica Acta.
(2004);
1658
44-49
4
Castillo R., Fernandèz J., Gòmez-Gòmez L..
Implications of carotenoid biosynthetic genes in apocarotenoid formation during the
stigma development of Crocus sativus and its closer relatives.
Plant Physiology.
(2005);
139
674-689
5
Chichiriccò G..
Developmental stages of the pollen wall and tapetum in some Crocus species.
Grana.
(1999);
38
31-41
6
Chichiriccò G..
Viability-germinability of Crocus (Iridaceae) pollen in relation to cyto- and ecophysiological factors.
Flora.
(2000);
195
193-199
7
Chichiriccò G..
In vivo hydration and pollen germination in Crocus vernus ssp. vernus as a function of humidity.
Israel Journal of Plant Sciences.
(2004);
52
307-314
8
Chichiriccò G..
Post-shedding dehydration and in vivo temporal germination of Crocus pollen.
Grana.
(2005);
44
142-147
9
Davison A. W., Cape J. N..
Atmospheric nitrogen-issues related to agricultural systems.
Environment International.
(2003);
29
181-187
10
Elagoz V., Manning W..
Responses of sensitive and tolerant bush beans (Phaseolus vulgaris L.) to ozone in open-top chambers are influenced by phenotypic differences, morphological
characteristics, and the chamber environment.
Environment Pollution.
(2005);
136
371-383
11
Feder W. A..
Reduction in tobacco pollen germination and tube elongation induced by low levels
of ozone.
Science.
(1968);
160
1122
12
Feder W. A., Sullivan F..
Differential susceptibility of pollen grains to ozone injury.
Phytopathology.
(1969);
59
399
13
Fiscus E. L., Booker F. L., Burkey K. O..
Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning.
Plant, Cell and Environment.
(2005);
28
997-1011
14
Furness C. A., Rudall P. J..
Inaperturate pollen in monocotyledons.
International Journal of Plant Science.
(1999);
160
395-414
15
Gimeno B. S., Bermelo V., Sanz J., de la Torre D., Gil J. M..
Assessment of the effects of ozone exposure and plant competition on the reproductive
ability of three therophytic clover species from Iberian pastures.
Atmospheric Environment.
(2004);
38
2295-2303
16
Gottardini E., Cristofolini F., Paletti E., Lazzeri P., Pepponi G..
Pollen viability for air pollution bio-monitoring.
Journal Atmospheric Chemistry.
(2004);
49
149-159
17
Gravano E., Bussotti F., Strasser R., Schaub M., Novak K., Skelly J., Tani C..
Ozone symptoms in leaves of woody plants in open top chambers: ultrastructural and
physiological characteristics.
Physiologia Plantarum.
(2004);
121
620-633
18
Harrison B. H., Feder W. A..
Ultrastructural changes in pollen exposed to ozone.
Phytopathology.
(1974);
64
257-258
19
Herman F., Smidt S., Huber S., Englisch M., Knoflacher M..
Evaluation of pollution-related stress factors for forest ecosystems in Central Europe.
Environment Science Pollution Research.
(2001);
4
231-242
20
Heslop-Harrison J., Heslop-Harrison Y..
Evaluation of pollen viability by enzymatically induced fluorescence: intracellular
hydrolysis of fluorescein diacetate.
Stain Technology.
(1970);
45
111-120
21
Heslop-Harrison Y..
The pollen-stigma interaction: pollen-tube penetration in Crocus .
Annals of Botany.
(1977);
41
913-922
22
Heslop-Harrison Y., Shivanna S. R..
The receptive surface of the angiosperm stigma.
Annals of Botany.
(1977);
41
1233-1258
23
Hormaza J. I., Pinney K., Polito V. S..
Correlation in the tolerance to ozone between sporophytes and male gametophytes of
several fruit and nut tree species (Rosaceae).
Sexual Plant Reproduction.
(1996);
9
44-48
24
Junk J., Helbig A., Krein A..
Screening and scenarios of traffic emission at Trier, Germany.
Environment Science Pollution Research.
(2004);
5
297-301
25
Kangasjärvi J., Jaspers P., Kollist H..
Signalling and cell death in ozone-exposed plants.
Plant, Cell and Environment.
(2005);
28
1021-1036
26
Kho Y. O., Baer J..
Observing pollen tubes by means of fluorescence.
Euphytica.
(1968);
17
298-303
27
Klumpp A., Ansel W., Klumpp G., Belluzzo N., Calatayud V., Chaplin N., Garrec J. P.,
Gutsche H. J., Hayes M., Hentze H. W., Kambezidis H., Laurent O..
Eurobionet: a pan-european biomonitoring network for urban air Q.
Environmental Science Pollution Research.
(2002);
3
199-203
28
Koch J. R., Scherzer A. J., Eshita S. M., Davis K. R..
Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation.
Plant Physiology.
(1998);
118
1243-1252
29
Loibl W., Bolhàr-Nordenkampf H., Herman F., Smidt S..
Modelling critical levels of ozone for the forested area of Austria. Modifications
of the AOT 40 concept.
Environmental Science Pollution Research.
(2004);
3
171-180
30
Lowe G. M., Vlismas K., Young A. J..
Carotenoids as prooxidants?.
Molecular Aspects of Medicine.
(2003);
24
363-369
31
Manning W. J., Godzik B..
Bioindicator plants for ambient ozone in Central and Eastern Europe.
Environment Pollution.
(2004);
130
33-39
32
Nali C., Paletti E., Marabottini R., Della Rocca G., Lorenzini G., Paolacci A. R.,
Ciuffi M., Badiani M..
Ecophysiological and biochemical strategies of response to ozone in Mediterranean
evergreen broadleaf species.
Atmospheric Environment.
(2004);
38
2247-2257
33
Nisoli E., Clementi E., Tonello C., Moncada S., Carruba M. O..
Can endogenous gaseous messengers control mitochondrial biogenesis in mammalian cells?.
Prostaglandin and Other Lipid Mediators.
(2004);
73
9-27
34 Omasa K., Saji H., Youssefian S., Kondo N.. Air Pollution and Plant Biotechnology. Tokio;
Springer-Verlag (2002): 1-480
35
Palitzsch K., Göllner S., Lupa K., Matschullat J., Messal C., Pleßow K., Schipek M.,
Schnabel I., Weller C., Zimmermann F..
Ozone concentrations in forest ecosystems from the viewpoint of atmosphere chemistry
and plant physiology - a synopsis.
Environmental Science Pollution Research.
(2005);
4
231-241
36
Rezanejad F., Majd A., Shariatzadeh S. M. A., Moein M., Aminzadeh M., Mirzaeian M..
Effect of air pollution on soluble proteins, structure and cellular material release
in pollen of Lagerstroemia indica L. (Lytraceae).
Acta Biologica Cracoviensia Botanica.
(2003);
45
129-132
37
Rodriguez-Riano T., Dafni A..
A new procedure to assess pollen viability.
Sexual Plant Reproduction.
(2000);
12
241-244
38
Roshchina V. V., Mel'nikova E. V..
Pollen chemosensitivity to ozone and peroxides.
Russian Journal of Plant Physiology.
(2001);
48
74-83
39 Roshchina V. V., Roshchina V. D.. Ozone and Plant Cell. Dordrecht; Kluwer Academic
Publishers (2003): 1-240
40
Schaub M., Skelly J. M., Zhang J. W., Ferdinand J. A., Savage J. E., Stevenson R. E.,
Davis D. D., Stainer K. C..
Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under field conditions.
Environment Pollution.
(2005);
133
553-567
41
Sikora E. J., Chappelka A. H..
Air pollution damage to plants. Alabama Cooperative Extension System, Auburn and Alabama
Universities.
Circular ANR‐913.
(1996);
1-5
42 Treshow M., Anderson F. K.. Plant Stress from Air Pollution. Chichester; J. Wiley
and Sons (1989): 1-283
43
Wheeler M. J., Franklin-Tong V. E., Franklin F. C. H..
The molecular and genetic basis of pollen-pistil interactions.
New Phytologist.
(2001);
151
565-584
44 White A., Handle R. P., Smith E. L.. Principles of Biochemistry. Tokio; Kōgakusha
Company (1968): 369-372
45
Young A. J., Lowe G. M..
Antioxidants and prooxidant properties of carotenoids.
Archivies Biochemistry Biophysics.
(2001);
385
20-27
46
Yu T. Y., Chang I. C..
Spatiotemporal features of severe air pollution in northern Taiwan.
Environmental Science Pollution Research.
(2006);
4
268-275
47
Werner H., Fabian P..
Free-air fumigation on mature trees. A novel system for controlled ozone enrichment
in growth-up beech and spruce canopies.
Environmental Science Pollution Research.
(2002);
2
117-121
G. Chichiriccò
Dipartimento di Scienze Ambientali Università di L'Aquila
Via Vetoio
67100 L'Aquila
Italy
Email: chichiri@univaq.it
Editor: J. P. Sparks