Semin Reprod Med 2007; 25(4): 243-251
DOI: 10.1055/s-2007-980218
Published in 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Oocyte-Specific Genes Affect Folliculogenesis, Fertilization, and Early Development

Ping Zheng1 , Jurrien Dean1
  • 1Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland
Further Information

Publication History

Publication Date:
26 June 2007 (online)


Although cell-autonomous genetic programs pursued by germ and somatic cells are of critical import, intimate interplays between the two cell types are also essential for normal development of the female gonad. Recent studies demonstrate that oocytes play active roles in coordinating the growth and differentiation of somatic cells during folliculogenesis and affect successful outcomes at fertilization and early development. Mouse transgenesis has been particularly useful in defining germ-cell specific genes and their roles in folliculogenesis (e.g., Dazla, Figla, Nobox, Sohlh1, Ybx2, Cpeb1, Gdf9), fertilization (e.g., Zp1, Zp2, Zp3), and preimplantation embryonic development (e.g., Npm2, Zar1, Nalp5, Dppa3). Continued identification of novel oocyte-specific genes and the annotation of their functions will provide additional insight into the genetic pathways regulating ovarian development. The knowledge gained from mouse models will no doubt benefit the understanding of human biology and treatment of reproductive failure.


  • 1 Koubova J, Menke D B, Zhou Q et al.. Retinoic acid regulates sex-specific timing of meiotic initiation in mice.  Proc Natl Acad Sci USA. 2006;  103 2474-2479
  • 2 Bowles J, Knight D, Smith C et al.. Retinoid signaling determines germ cell fate in mice.  Science. 2006;  312 596-600
  • 3 McLaren A, Southee D. Entry of mouse embryonic germ cells into meiosis.  Dev Biol. 1997;  187 107-113
  • 4 Hunt P A, Hassold T J. Sex matters in meiosis.  Science. 2002;  296 2181-2183
  • 5 Morelli M A, Cohen P E. Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis.  Reproduction. 2005;  130 761-781
  • 6 Brambell F WR. The development and morphology of the gonads of the mouse. Part III. The growth of the follicles.  Proc R Soc Lond (Biol). 1928;  103 258-272
  • 7 Pepling M E, Spradling A C. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles.  Dev Biol. 2001;  234 339-351
  • 8 Hirshfield A N. Development of follicles in the mammalian ovary.  Int Rev Cytol. 1991;  124 43-101
  • 9 Zuckerman S, Baker T G. The development of the ovary and the process of oogenesis. In; Zuckerman S, Weir BJ The Ovary. New York; Academic Press 1977: 41-63
  • 10 Zamboni L, Upadhyay S. Germ cell differentiation in mouse adrenal glands.  J Exp Zool. 1983;  228 173-193
  • 11 Soyal S M, Amleh A, Dean J. FIGα, a germ-cell specific transcription factor required for ovarian follicle formation.  Development. 2000;  127 4645-4654
  • 12 Ruggiu M, Speed R, Taggart M et al.. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis.  Nature. 1997;  389 73-77
  • 13 Pangas S A, Choi Y, Ballow D J et al.. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8.  Proc Natl Acad Sci USA. 2006;  103 8090-8095
  • 14 Rajkovic A, Pangas S A, Ballow D et al.. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression.  Science. 2004;  305 1157-1159
  • 15 Yang J, Medvedev S, Yu J et al.. Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility.  Proc Natl Acad Sci USA. 2005;  102 5755-5760
  • 16 Tay J, Richter J D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice.  Dev Cell. 2001;  1 201-213
  • 17 Dong J, Albertini D F, Nishimori K et al.. Growth differentiation factor-9 is required during early ovarian folliculogenesis.  Nature. 1996;  383 531-535
  • 18 Liang L, Soyal S M, Dean J. FIGα, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes.  Development. 1997;  124 4939-4949
  • 19 Millar S E, Lader E S, Dean J. ZAP-1 DNA binding activity is first detected at the onset of zona pellucida gene expression in embryonic mouse oocytes.  Dev Biol. 1993;  158 410-413
  • 20 Ballow D, Meistrich M L, Matzuk M et al.. Sohlh1 is essential for spermatogonial differentiation.  Dev Biol. 2006;  294 161-167
  • 21 Ballow D J, Xin Y, Choi Y et al.. Sohlh2 is a germ cell-specific bHLH transcription factor.  Gene Expr Patterns. 2006;  6 1014-1018
  • 22 Zhao Y, Marin O, Hermesz E et al.. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain.  Proc Natl Acad Sci USA. 2003;  100 9005-9010
  • 23 Mori T, Yuxing Z, Takaki H et al.. The LIM homeobox gene, L3/Lhx8, is necessary for proper development of basal forebrain cholinergic neurons.  Eur J Neurosci. 2004;  19 3129-3141
  • 24 Reijo R, Lee T Y, Salo P et al.. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene.  Nat Genet. 1995;  10 383-393
  • 25 Cooke H J, Lee M, Kerr S et al.. A murine homologue of the human DAZ gene is autosomal and expressed only in male and female gonads.  Hum Mol Genet. 1996;  5 513-516
  • 26 Lin Y, Page D C. Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice.  Dev Biol. 2005;  288 309-316
  • 27 Collier B, Gorgoni B, Loveridge C et al.. The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells.  EMBO J. 2005;  24 2656-2666
  • 28 Padmanabhan K, Richter J D. Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation.  Genes Dev. 2006;  20 199-209
  • 29 Yu J, Hecht N B, Schultz R M. Expression of MSY2 in mouse oocytes and preimplantation embryos.  Biol Reprod. 2001;  65 1260-1270
  • 30 Racki W J, Richter J D. CPEB controls oocyte growth and follicle development in the mouse.  Development. 2006;  133 4527-4537
  • 31 Vasudevan S, Seli E, Steitz J A. Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades.  Genes Dev. 2006;  20 138-146
  • 32 Matzuk M M, Burns K H, Viveiros M M et al.. Intercellular communication in the mammalian ovary: oocytes carry the conversation.  Science. 2002;  296 2178-2180
  • 33 Nilsson E, Parrott J A, Skinner M K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis.  Mol Cell Endocrinol. 2001;  175 123-130
  • 34 Nilsson E E, Skinner M K. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition.  Mol Cell Endocrinol. 2004;  214 19-25
  • 35 Thomas F H, Vanderhyden B C. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth.  Reprod Biol Endocrinol. 2006;  4 4-9
  • 36 Yan C, Wang P, DeMayo J et al.. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function.  Mol Endocrinol. 2001;  15 854-866
  • 37 Elvin J A, Yan C, Wang P et al.. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary.  Mol Endocrinol. 1999;  13 1018-1034
  • 38 Dube J L, Wang P, Elvin J et al.. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes.  Mol Endocrinol. 1998;  12 1809-1817
  • 39 Laitinen M, Vuojolainen K, Jaatinen R et al.. A novel growth differentiation factor-9 (GDF-9) related factor is co- expressed with GDF-9 in mouse oocytes during folliculogenesis.  Mech Dev. 1998;  78 135-140
  • 40 Yoshino O, McMahon H E, Sharma S et al.. A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse.  Proc Natl Acad Sci USA. 2006;  103 10678-10683
  • 41 Familiari G, Relucenti M, Heyn R et al.. Three-dimensional structure of the zona pellucida at ovulation.  Microsc Res Tech. 2006;  69 415-426
  • 42 Bleil J D, Wassarman P M. Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro.  Proc Natl Acad Sci USA. 1980;  77 1029-1033
  • 43 Bleil J D, Wassarman P M. Structure and function of the zona pellucida: Identification and characterization of the proteins of the mouse oocyte's zona pellucida.  Dev Biol. 1980;  76 185-202
  • 44 Phillips D M, Shalgi R. Surface architecture of the mouse and hamster zona pellucida and oocyte.  J Ultrastruct Res. 1980;  72 1-12
  • 45 Storey B T, Lee M A, Muller C et al.. Binding of mouse spermatozoa to the zonae pellucidae of mouse eggs in cumulus: evidence that the acrosomes remain substantially intact.  Biol Reprod. 1984;  31 1119-1128
  • 46 Cherr G N, Lambert H, Meizel S et al.. In vitro studies of the golden hamster sperm acrosome reaction: completion on the zona pellucida and induction by homologous soluble zonae pellucidae.  Dev Biol. 1986;  114 119-131
  • 47 Ward C R, Storey B T. Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay.  Dev Biol. 1984;  104 287-296
  • 48 Jungnickel M K, Marrero H, Birnbaumer L et al.. Trp2 regulates entry of Ca2 + into mouse sperm triggered by egg ZP3.  Nat Cell Biol. 2001;  3 499-502
  • 49 Herrick S B, Schweissinger D L, Kim S W et al.. The acrosomal vesicle of mouse sperm is a calcium store.  J Cell Physiol. 2005;  202 663-671
  • 50 Baibakov B, Gauthier L, Talbot P et al.. Sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis.  Development. 2007;  134 433-443
  • 51 Bork P, Sander C. A large domain common to sperm receptors (Zp2 and Zp3) and TGF- beta type III receptor.  FEBS Lett. 1992;  300 237-240
  • 52 Jovine L, Qi H, Williams Z et al.. The ZP domain is a conserved module for polymerization of extracellular proteins.  Nat Cell Biol. 2002;  4 457-461
  • 53 Boja E S, Hoodbhoy T, Fales H M et al.. Structural characterization of native mouse zona pellucida proteins using mass spectrometry.  J Biol Chem. 2003;  278 34189-34202
  • 54 Rankin T, Talbot P, Lee E et al.. Abnormal zonae pellucidae in mice lacking ZP1 result in early embryonic loss.  Development. 1999;  126 3847-3855
  • 55 Rankin T L, O'Brien M, Lee E et al.. Defective zonae pellucidae in Zp2 null mice disrupt folliculogenesis, fertility and development.  Development. 2001;  128 1119-1126
  • 56 Rankin T, Familari M, Lee E et al.. Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile.  Development. 1996;  122 2903-2910
  • 57 Liu C, Litscher E S, Mortillo S et al.. Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice.  Proc Natl Acad Sci USA. 1996;  93 5431-5436
  • 58 Rankin T L, Tong Z-B, Castle P E et al.. Human ZP3 restores fertility in Zp3 null mice without affecting order-specific sperm binding.  Development. 1998;  125 2415-2424
  • 59 Rankin T L, Coleman J S, Epifano O et al.. Fertility and taxon-specific sperm binding persist after replacement of mouse ‘sperm receptors' with human homologues.  Dev Cell. 2003;  5 33-43
  • 60 Florman H M, Wassarman P M. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity.  Cell. 1985;  41 313-324
  • 61 Leyton L, Saling P. Evidence that aggregation of mouse sperm receptors by ZP3 triggers the acrosome reaction.  J Cell Biol. 1989;  108 2163-2168
  • 62 Miller D J, Macek M B, Shur B D. Complementarity between sperm surface beta-1,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding.  Nature. 1992;  357 589-593
  • 63 Miller D J, Gong X, Decker G et al.. Egg cortical granule N-acetylglucosaminidase is required for the mouse zona block to polyspermy.  J Cell Biol. 1993;  123 1431-1440
  • 64 Thall A D, Maly P, Lowe J B. Oocyte gal alpha 1,3gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse.  J Biol Chem. 1995;  270 21437-21440
  • 65 Lu Q, Shur B D. Sperm from β1,4-galactosyltransferase-null mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly.  Development. 1997;  124 4121-4131
  • 66 Liu C, Litscher S, Wassarman P M. Transgenic mice with reduced numbers of functional sperm receptors on their eggs reproduce normally.  Mol Biol Cell. 1995;  6 577-585
  • 67 Liu D Y, Baker H W, Pearse M J et al.. Normal sperm-zona pellucida interaction and fertilization in vitro in alpha-1,3-galactosyltransferase gene knockout mice.  Mol Hum Reprod. 1997;  3 1015-1016
  • 68 Asano M, Furukawa K, Kido M et al.. Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells.  EMBO J. 1997;  16 1850-1857
  • 69 Bleil J D, Beall C F, Wassarman P M. Mammalian sperm-egg interaction: fertilization of mouse eggs triggers modification of the major zona pellucida glycoprotein, ZP2.  Dev Biol. 1981;  86 189-197
  • 70 Bauskin A R, Franken D R, Eberspaecher U et al.. Characterization of human zona pellucida glycoproteins.  Mol Hum Reprod. 1999;  5 534-540
  • 71 Dean J. Reassessing the molecular biology of sperm-egg recognition with mouse genetics.  Bioessays. 2004;  26 29-38
  • 72 Hoodbhoy T, Dean J. Insights into the molecular basis of sperm-egg recognition in mammals.  Reproduction. 2004;  127 417-422
  • 73 Wassarman P M, Jovine L, Qi H et al.. Recent aspects of mammalian fertilization research.  Mol Cell Endocrinol. 2005;  234 95-103
  • 74 Shur B D, Rodeheffer C, Ensslin M A et al.. Identification of novel gamete receptors that mediate sperm adhesion to the egg coat.  Mol Cell Endocrinol. 2006;  250 137-148
  • 75 Nakanishi T, Ikawa M, Yamada S et al.. Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein.  FEBS Lett. 1999;  449 277-283
  • 76 Christians E, Davis A A, Thomas S D et al.. Maternal effect of hsf1 on reproductive success.  Nature. 2000;  407 693-694
  • 77 Wu X, Viveiros M M, Eppig J J et al.. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition.  Nat Genet. 2003;  33 187-191
  • 78 Burns K H, Viveiros M M, Ren Y et al.. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos.  Science. 2003;  300 633-636
  • 79 Payer B, Saitou M, Barton S C et al.. Stella is a maternal effect gene required for normal early development in mice.  Curr Biol. 2003;  13 2110-2117
  • 80 Bortvin A, Goodheart M, Liao M et al.. Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice.  BMC Dev Biol. 2004;  4 2
  • 81 Oh B, Hwang S Y, Solter D et al.. Spindlin, a major maternal transcript expressed in the mouse during the transition from oocyte to embryo.  Development. 1997;  124 493-503
  • 82 Bultman S J, Gebuhr T C, Pan H et al.. Maternal BRG1 regulates zygotic genome activation in the mouse.  Genes Dev. 2006;  20 1744-1754
  • 83 Ma J, Zeng F, Schultz R M et al.. Basonuclin: a novel mammalian maternal-effect gene.  Development. 2006;  133 2053-2062
  • 84 Tong Z B, Gold L, Pfeifer K E et al.. Mater, a maternal effect gene required for early embryonic development in mice.  Nat Genet. 2000;  26 267-268
  • 85 Howell C Y, Bestor T H, Ding F et al.. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene.  Cell. 2001;  104 829-838
  • 86 Wu X, Wang P, Brown C A et al.. Zygote arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate ovaries.  Biol Reprod. 2003;  69 861-867
  • 87 Philpott A, Leno G H, Laskey R A. Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin.  Cell. 1991;  65 569-578
  • 88 Philpott A, Leno G H. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts.  Cell. 1992;  69 759-767
  • 89 Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation.  Nat Rev Mol Cell Biol. 2003;  4 95-104
  • 90 Saitou M, Barton S C, Surani M A. A molecular programme for the specification of germ cell fate in mice.  Nature. 2002;  418 293-300

Dr. Ping Zheng

Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Disease

National Institutes of Health, 50 South Drive, Bethesda, MD 20892