Semin Reprod Med 2007; 25(4): 287-299
DOI: 10.1055/s-2007-980222
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Engineering the Follicle Microenvironment

Erin R. West1 , Lonnie D. Shea1 , 2 , 3 , Teresa K. Woodruff2 , 3 , 4
  • 1Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
  • 2Center for Reproductive Research, Northwestern University, Evanston, Illinois
  • 3The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
  • 4Department of Obstetrics and Gynecology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
Further Information

Publication History

Publication Date:
26 June 2007 (online)


In vitro ovarian follicle culture provides a tool to investigate folliculogenesis, and may one day provide women with fertility-preservation options. The application of tissue engineering principles to ovarian follicle maturation may enable the creation of controllable microenvironments that will coordinate the growth of the multiple cellular compartments within the follicle. Three-dimensional culture systems can preserve follicle architecture, thereby maintaining critical cell-cell and cell-matrix signaling lost in traditional two-dimensional attached follicle culture systems. Maintaining the follicular structure while manipulating the biochemical and mechanical environment will enable the development of controllable systems to investigate the fundamental biological principles underlying follicle maturation. This review describes recent advances in ovarian follicle culture, and highlights the tissue engineering principles that may be applied to follicle culture, with the ultimate objective of germline preservation for females facing premature infertility.


  • 1 Nayudu P L, Fehrenbach A, Kiesel P et al.. Progress toward understanding follicle development in vitro: appearances are not deceiving.  Arch Med Res. 2001;  32 587-594
  • 2 Senbon S, Hirao Y, Miyano T. Interactions between the oocyte and surrounding somatic cells in follicular development: lessons from in vitro culture.  J Reprod Dev. 2003;  49 259-269
  • 3 Abir R, Nitke S, Ben-Haroush A et al.. In vitro maturation of human primordial ovarian follicles: clinical significance, progress in mammals, and methods for growth evaluation.  Histol Histopathol. 2006;  21 887-898
  • 4 Thomas F H, Walters K A, Telfer E E. How to make a good oocyte: an update on in-vitro models to study follicle regulation.  Hum Reprod Update. 2003;  9 541-555
  • 5 Demeestere I, Centner J, Gervy C et al.. Impact of various endocrine and paracrine factors on in vitro culture of preantral follicles in rodents.  Reproduction. 2005;  130 147-156
  • 6 Ksiazkiewicz L K. Recent achievements in in vitro culture and preservation of ovarian follicles in mammals.  Reprod Biol. 2006;  6 3-16
  • 7 Kreeger P K, Deck J W, Woodruff T K et al.. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels.  Biomaterials. 2006;  27 714-723
  • 8 Xu M, Kreeger P K, Shea L D et al.. Tissue engineered follicles produce live, fertile offspring.  Tissue Eng. 2006;  , In press
  • 9 Xu M, West E, Shea L D et al.. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development.  Biol Reprod. 2006;  75 916-923
  • 10 Eppig J J. Mouse oocyte development in vitro with various culture systems.  Dev Biol. 1977;  60 371-388
  • 11 McGee E A, Hsueh A J. Initial and cyclic recruitment of ovarian follicles.  Endocr Rev. 2000;  21 200-214
  • 12 Irving-Rodgers H F, Rodgers R J. Extracellular matrix of the developing ovarian follicle.  Semin Reprod Med. 2006;  24 195-203
  • 13 Rodgers R J, Irving-Rodgers H F, Russell D L. Extracellular matrix of the developing ovarian follicle.  Reproduction. 2003;  126 415-424
  • 14 Irving-Rodgers H F, Rodgers R J. Extracellular matrix in ovarian follicular development and disease.  Cell Tissue Res. 2005;  322 89-98
  • 15 Rodgers R J, Irving-Rodgers H F, van Wezel I L. Extracellular matrix in ovarian follicles.  Mol Cell Endocrinol. 2000;  163 73-79
  • 16 Berkholtz C B, Shea L D, Woodruff T K. Extracellular matrix functions in follicle maturation.  Semin Reprod Med. 2006;  24 262-269
  • 17 Albertini D F, Combelles C M, Benecchi E et al.. Cellular basis for paracrine regulation of ovarian follicle development.  Reproduction. 2001;  121 647-653
  • 18 Albertini D F, Fawcett D W, Olds P J. Morphological variations in gap junctions of ovarian granulosa cells.  Tissue Cell. 1975;  7 389-405
  • 19 Anderson E, Albertini D F. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary.  J Cell Biol. 1976;  71 680-686
  • 20 Edry I, Sela-Abramovich S, Dekel N. Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle.  Mol Cell Endocrinol. 2006;  252 102-106
  • 21 Cecconi S, Ciccarelli C, Barberi M et al.. Granulosa cell-oocyte interactions.  Eur J Obstet Gynecol Reprod Biol. 2004;  115(suppl 1) S19-S22
  • 22 Kidder G M, Mhawi A A. Gap junctions and ovarian folliculogenesis.  Reproduction. 2002;  123 613-620
  • 23 Plancha C E, Sanfins A, Rodrigues P et al.. Cell polarity during folliculogenesis and oogenesis.  Reprod Biomed Online. 2005;  10 478-484
  • 24 Bornslaeger E A, Schultz R M. Regulation of mouse oocyte maturation: effect of elevating cumulus cell cAMP on oocyte cAMP levels.  Biol Reprod. 1985;  33 698-704
  • 25 Dekel N, Lawrence T S, Gilula N B et al.. Modulation of cell-to-cell communication in the cumulus-oocyte complex and the regulation of oocyte maturation by LH.  Dev Biol. 1981;  86 356-362
  • 26 Gilula N B, Epstein M L, Beers W H. Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex.  J Cell Biol. 1978;  78 58-75
  • 27 Martinovitch P N. The development in vitro of the mammalian gonad. Ovary and ovogenesis.  Proc R Soc Lond B Biol Sci. 1938;  125 232-249
  • 28 O'Brien M J, Pendola J K, Eppig J J. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence.  Biol Reprod. 2003;  68 1682-1686
  • 29 Eppig J J, O'Brien M J. Development in vitro of mouse oocytes from primordial follicles.  Biol Reprod. 1996;  54 197-207
  • 30 Cortvrindt R, Smitz J, Van Steirteghem A C. In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system.  Hum Reprod. 1996;  11 2656-2666
  • 31 Cecconi S, Gualtieri G, Di Bartolomeo A et al.. Evaluation of the effects of extremely low frequency electromagnetic fields on mammalian follicle development.  Hum Reprod. 2000;  15 2319-2325
  • 32 Eppig J J, Schroeder A C. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro.  Biol Reprod. 1989;  41 268-276
  • 33 Daniel S A, Armstrong D T, Gore-Langton R E. Growth and development of rat oocytes in vitro.  Gamete Res. 1989;  24 109-121
  • 34 Eppig J J, Downs S M. The effect of hypoxanthine on mouse oocyte growth and development in vitro: maintenance of meiotic arrest and gonadotropin-induced oocyte maturation.  Dev Biol. 1987;  119 313-321
  • 35 Schroeder A C, Schultz R M, Kopf G S et al.. Fetuin inhibits zona pellucida hardening and conversion of ZP2 to ZP2f during spontaneous mouse oocyte maturation in vitro in the absence of serum.  Biol Reprod. 1990;  43 891-897
  • 36 Eppig J J, Hosoe M, O'Brien M J et al.. Conditions that affect acquisition of developmental competence by mouse oocytes in vitro: FSH, insulin, glucose and ascorbic acid.  Mol Cell Endocrinol. 2000;  163 109-116
  • 37 Gore-Langton R E, Daniel S A. Follicle-stimulating hormone and estradiol regulate antrum-like reorganization of granulosa cells in rat preantral follicle cultures.  Biol Reprod. 1990;  43 65-72
  • 38 Li R, Phillips D M, Mather J P. Activin promotes ovarian follicle development in vitro.  Endocrinology. 1995;  136 849-856
  • 39 Cain L, Chatterjee S, Collins T J. In vitro folliculogenesis of rat preantral follicles.  Endocrinology. 1995;  136 3369-3377
  • 40 Eppig J J, Telfer E E. Isolation and culture of oocytes.  Methods Enzymol. 1993;  225 77-84
  • 41 Gutierrez C G, Ralph J H, Telfer E E et al.. Growth and antrum formation of bovine preantral follicles in long-term culture in vitro.  Biol Reprod. 2000;  62 1322-1328
  • 42 Tambe S S, Nandedkar T D. Steroidogenesis in sheep ovarian antral follicles in culture: time course study and supplementation with a precursor.  Steroids. 1993;  58 379-383
  • 43 Roy S K, Treacy B J. Isolation and long-term culture of human preantral follicles.  Fertil Steril. 1993;  59 783-790
  • 44 Abir R, Franks S, Mobberley M A et al.. Mechanical isolation and in vitro growth of preantral and small antral human follicles.  Fertil Steril. 1997;  68 682-688
  • 45 Gomes J E, Correia S C, Gouveia-Oliveira A et al.. Three-dimensional environments preserve extracellular matrix compartments of ovarian follicles and increase FSH-dependent growth.  Mol Reprod Dev. 1999;  54 163-172
  • 46 Abir R, Fisch B, Nitke S et al.. Morphological study of fully and partially isolated early human follicles.  Fertil Steril. 2001;  75 141-146
  • 47 Boland N I, Humpherson P G, Leese H J et al.. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro.  Biol Reprod. 1993;  48 798-806
  • 48 Nayudu P L, Osborn S M. Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro.  J Reprod Fertil. 1992;  95 349-362
  • 49 Rowghani N M, Heise M K, McKeel D et al.. Maintenance of morphology and growth of ovarian follicles in suspension culture.  Tissue Eng. 2004;  10 545-552
  • 50 Wycherley G, Downey D, Kane M T et al.. A novel follicle culture system markedly increases follicle volume, cell number and oestradiol secretion.  Reproduction. 2004;  127 669-677
  • 51 Torrance C, Telfer E, Gosden R G. Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture.  J Reprod Fertil. 1989;  87 367-374
  • 52 Pangas S A, Saudye H, Shea L D et al.. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes.  Tissue Eng. 2003;  9 1013-1021
  • 53 Kreeger P K, Fernandes N N, Woodruff T K et al.. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose.  Biol Reprod. 2005;  73 942-950
  • 54 Langer R, Vacanti J P. Tissue engineering.  Science. 1993;  260 920-926
  • 55 Kim B S, Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering.  Trends Biotechnol. 1998;  16 224-230
  • 56 Haug A, Larsen B. Quantitative determination of the uronic acid composition of alginates.  Acta Chem Scand. 1962;  16 1908-1918
  • 57 Haug A, Larsen B, Smidsrod O. Studies of the sequence of uronic acid residues in alginic acid.  Acta Chem Scand. 1967;  21 691-704
  • 58 Lee K Y, Mooney D J. Hydrogels for tissue engineering.  Chem Rev. 2001;  101 1869-1879
  • 59 Drury J L, Mooney D J. Hydrogels for tissue engineering: scaffold design variables and applications.  Biomaterials. 2003;  24 4337-4351
  • 60 Kong H J, Lee K Y, Mooney D J. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration.  Polym. 2002;  43 6239-6246
  • 61 Kong H J, Smith M K, Mooney D J. Designing alginate hydrogels to maintain viability of immobilized cells.  Biomaterials. 2003;  24 4023-4029
  • 62 Bouhadir K H, Hausman D S, Mooney D J. Synthesis of cross-linked poly(aldehyde guluronate) hydrogels.  Polymer. 1999;  40 3575-3584
  • 63 Bouhadir K H, Lee K Y, Alsberg E et al.. Degradation of partially oxidized alginate and its potential application for tissue engineering.  Biotechnol Prog. 2001;  17 945-950
  • 64 Rowley J A, Madlambayan G, Mooney D J. Alginate hydrogels as synthetic extracellular matrix materials.  Biomaterials. 1999;  20 45-53
  • 65 Stoichet M S, Li R H, White M L et al.. Stability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agarose.  Biotechnol Bioeng. 1996;  50 374-381
  • 66 Li R H, Altreuter D H, Gentile F T. Transport characterization of hydrogel matrices for cell encapsulation.  Biotechnol Bioeng. 1996;  50 365-373
  • 67 Rodgers R J, van Wezel I L, Irving-Rodgers H F et al.. Roles of extracellular matrix in follicular development.  J Reprod Fertil Suppl. 1999;  54 343-352
  • 68 Rodgers R J. Extracellular matrix in the ovary.  Semin Reprod Med. 2006;  24 193-194
  • 69 Ricciardelli C, Rodgers R J. Extracellular matrix of ovarian tumors.  Semin Reprod Med. 2006;  24 270-282
  • 70 Monniaux D, Huet-Calderwood C, Bellego F L et al.. Integrins in the ovary.  Semin Reprod Med. 2006;  24 251-261
  • 71 Irving-Rodgers H F, Roger J, Luck M R et al.. Extracellular matrix of the corpus luteum.  Semin Reprod Med. 2006;  24 242-250
  • 72 Curry Jr T E, Smith M F. Impact of extracellular matrix remodeling on ovulation and the folliculo-luteal transition.  Semin Reprod Med. 2006;  24 228-241
  • 73 Russell D L, Salustri A. Extracellular matrix of the cumulus-oocyte complex.  Semin Reprod Med. 2006;  24 217-227
  • 74 Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.  Nat Biotechnol. 2005;  23 47-55
  • 75 Shin H, Jo S, Mikos A G. Biomimetic materials for tissue engineering.  Biomaterials. 2003;  24 4353-4364
  • 76 Silva E A, Mooney D J. Synthetic extracellular matrices for tissue engineering and regeneration.  Curr Top Dev Biol. 2004;  64 181-205
  • 77 Hubbell J A. Materials as morphogenetic guides in tissue engineering.  Curr Opin Biotechnol. 2003;  14 551-558
  • 78 Liu W F, Chen C S. Engineering biomaterials to control cell function.  Materials Today. 2005;  8 28-35
  • 79 Discher D E, Janmey P, Wang Y L. Tissue cells feel and respond to the stiffness of their substrate.  Science. 2005;  310 1139-1143
  • 80 Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior.  Biomaterials. 2007;  28 134-146
  • 81 Paszek M J, Weaver V M. The tension mounts: mechanics meets morphogenesis and malignancy.  J Mammary Gland Biol Neoplasia. 2004;  9 325-342
  • 82 Marti A, Feng Z, Altermatt H J et al.. Milk accumulation triggers apoptosis of mammary epithelial cells.  Eur J Cell Biol. 1997;  73 158-165
  • 83 Paszek M J, Zahir N, Johnson K R et al.. Tensional homeostasis and the malignant phenotype.  Cancer Cell. 2005;  8 241-254
  • 84 Oster G F, Murray J D, Harris A K. Mechanical aspects of mesenchymal morphogenesis.  J Embryol Exp Morphol. 1983;  78 83-125
  • 85 Trinkaus J P. Cells into organs: The forces that shape the embryo. 2nd ed. Englewood Cliffs, NJ; Prentice Hall College Division 1984
  • 86 Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium.  Curr Biol. 2003;  13 1365-1377
  • 87 Ingber D E. Mechanobiology and diseases of mechanotransduction.  Ann Med. 2003;  35 564-577
  • 88 Janmey P A, Weitz D A. Dealing with mechanics: mechanisms of force transduction in cells.  Trends Biochem Sci. 2004;  29 364-370
  • 89 Katsumi A, Orr A W, Tzima E et al.. Integrins in mechanotransduction.  J Biol Chem. 2004;  279 12001-12004
  • 90 Davies P F. Flow-mediated endothelial mechanotransduction.  Physiol Rev. 1995;  75 519-560
  • 91 Chen C S, Tan J, Tien J. Mechanotransduction at cell-matrix and cell-cell contacts.  Annu Rev Biomed Eng. 2004;  6 275-302
  • 92 Epstein N D, Davis J S. Sensing stretch is fundamental.  Cell. 2003;  112 147-150
  • 93 Gillespie P G, Walker R G. Molecular basis of mechanosensory transduction.  Nature. 2001;  413 194-202
  • 94 Blount P. Molecular mechanisms of mechanosensation: big lessons from small cells.  Neuron. 2003;  37 731-734
  • 95 Torday J S, Rehan V K. Mechanotransduction determines the structure and function of lung and bone: a theoretical model for the pathophysiology of chronic disease.  Cell Biochem Biophys. 2003;  37 235-246
  • 96 Alenghat F J, Ingber D E. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002 2002 PE6
  • 97 Hamill O P, Martinac B. Molecular basis of mechanotransduction in living cells.  Physiol Rev. 2001;  81 685-740
  • 98 Gudi S R, Clark C B, Frangos J A. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction.  Circ Res. 1996;  79 834-839
  • 99 Shyy J Y, Chien S. Role of integrins in endothelial mechanosensing of shear stress.  Circ Res. 2002;  91 769-775
  • 100 Dull R O, Tarbell J M, Davies P F. Mechanisms of flow-mediated signal transduction in endothelial cells: kinetics of ATP surface concentrations.  J Vasc Res. 1992;  29 410-419
  • 101 Ali M H, Schumacker P T. Endothelial responses to mechanical stress: where is the mechanosensor?.  Crit Care Med. 2002;  30 S198-S206
  • 102 Tschumperlin D J, Dai G, Maly I V et al.. Mechanotransduction through growth-factor shedding into the extracellular space.  Nature. 2004;  429 83-86
  • 103 Bryant S J, Chowdhury T T, Lee D A et al.. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels.  Ann Biomed Eng. 2004;  32 407-417
  • 104 Bryant S J, Durand K L, Anseth K S. Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production.  J Biomed Mater Res A. 2003;  67 1430-1436
  • 105 Bryant S J, Anseth K S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels.  J Biomed Mater Res. 2002;  59 63-72
  • 106 Engler A J, Sen S, Sweeney H L et al.. Matrix elasticity directs stem cell lineage specification.  Cell. 2006;  126 677-689
  • 107 Ries L AG, Percy C L, Bunin B R. Introduction. In: Ries LAG, Smith MA, Gurney JG et al. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975-1995. NIH Publication no. 99-4649. Bethesda, MD; National Cancer Institute 1999: 1-15
  • 108 Blatt J. Pregnancy outcome in long-term survivors of childhood cancer.  Med Pediatr Oncol. 1999;  33 29-33
  • 109 Weintraub M, Gross E, Kadari A et al.. Should ovarian cryopreservation be offered to girls with cancer.  Pediatr Blood Cancer. 2007;  48 4-9
  • 110 Maltaris T, Boehm D, Dittrich R et al.. Reproduction beyond cancer: a message of hope for young women.  Gynecol Oncol. 2006;  103 1109-1121
  • 111 Maltaris T, Seufert R, Fischl F et al.. The effect of cancer treatment on female fertility and strategies for preserving fertility.  Eur J Obstet Gynecol Reprod Biol. 2007;  130 148-155
  • 112 Donnez J, Martinez-Madrid B, Jadoul P et al.. Ovarian tissue cryopreservation and transplantation: a review.  Hum Reprod Update. 2006;  12 519-535
  • 113 Nieman C L, Kazer R, Brannigan R E et al.. Cancer survivors and infertility: a review of a new problem and novel answers.  J Support Oncol. 2006;  4 171-178
  • 114 Meirow D, Levron J, Eldar-Geva T et al.. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy.  N Engl J Med. 2005;  353 318-321
  • 115 Donnez J, Dolmans M M, Demylle D et al.. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue.  Lancet. 2004;  364 1405-1410
  • 116 Fabbri R. Cryopreservation of human oocytes and ovarian tissue.  Cell Tissue Bank. 2006;  7 113-122
  • 117 Dolmans M M, Michaux N, Camboni A et al.. Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles.  Hum Reprod. 2006;  21 413-420
  • 118 The Practice Committee of the American Society for Reproductive Medicine . Ovarian hyperstimulation syndrome.  Fertil Steril. 2006;  86(suppl 5) S178-S183
  • 119 Abir R, Roizman P, Fisch B et al.. Pilot study of isolated early human follicles cultured in collagen gels for 24 hours.  Hum Reprod. 1999;  14 1299-1301
  • 120 Vitt U A, Nayudu P L, Rose U M et al.. Embryonic development after follicle culture is influenced by follicle-stimulating hormone isoelectric point range.  Biol Reprod. 2001;  65 1542-1547
  • 121 Spears N, Boland N I, Murray A A et al.. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile.  Hum Reprod. 1994;  9 527-532
  • 122 Heise M, Koepsel R, Russell A J et al.. Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology.  Reprod Biol Endocrinol. 2005;  3 47

Teresa K WoodruffPh.D. 

Department of Obstetrics and Gynecology, The Feinberg School of Medicine

Northwestern University, Chicago, IL 60611