References and Notes
<A NAME="RD06907ST-1A">1a</A>
Barret AGM.
Graboski GG.
Chem. Rev.
1986,
86:
751
<A NAME="RD06907ST-1B">1b</A>
Nitroalkanes and Nitroalkenes in Synthesis, In Tetrahedron Symposia-in-Print; Barret, A. G. M., Ed.Tetrahedron
1990,
46:
7313
<A NAME="RD06907ST-1C">1c</A>
Noboru O. In The Nitro Group in Organic Synthesis
Feuer H.
Organic Nitro Chemistry Series, Wiley-VCH;
New York:
2001.
<A NAME="RD06907ST-2A">2a</A>
The Chemistry of Functional Groups: The Chemistry of The Quinoid Compounds
Patai S.
Rappoport Z.
Wiley;
New York:
1988.
<A NAME="RD06907ST-2B">2b</A>
Thomson RH.
Naturally Occurring Quinones
4th ed.:
Chapman and Hall;
London:
1997.
<A NAME="RD06907ST-3">3</A>
Cheng CC.
Structural Aspects of Antineoplastic Agents - A New Approach, In Progress in Medicinal Chemistry
Vol. 25:
Ellis GP.
West GB.
Elsevier;
Amsterdam:
1988.
p.pp 35-83
<A NAME="RD06907ST-4A">4a</A>
Gould SJ.
Chem. Rev.
1997,
97:
2499
<A NAME="RD06907ST-4B">4b</A>
Marco-Contelles J.
Molina M.
Curr. Org. Chem.
2003,
7:
1433
<A NAME="RD06907ST-5">5</A>
Harwood JS.
Harwood CA.
J. Org. Chem.
2004,
69:
5128
<A NAME="RD06907ST-6">6</A>
Yu M.
Malinakova HC.
Stagliano KN.
J. Org. Chem.
2006,
71:
6648
<A NAME="RD06907ST-7A">7a</A>
Estévez JC.
Estévez RJ.
Castedo L.
Tetrahedron Lett.
1993,
34:
6479
<A NAME="RD06907ST-7B">7b</A>
Cruces J.
Estévez JC.
Castedo L.
Estévez RJ.
Tetrahedron Lett.
2001,
42:
4825
<A NAME="RD06907ST-7C">7c</A>
Cruces J.
Martínez E.
Treus M.
Martínez LA.
Estévez JC.
Estévez RJ.
Castedo L.
Tetrahedron
2002,
58:
3015
<A NAME="RD06907ST-7D">7d</A>
Barcia JC.
Cruces J.
Estévez JC.
Estévez RJ.
Castedo L.
Tetrahedron Lett.
2002,
43:
5141
<A NAME="RD06907ST-7E">7e</A>
Fernández M.
Barcia C.
Estévez JC.
Estévez RJ.
Castedo L.
Synlett
2004,
267
<A NAME="RD06907ST-7F">7f</A>
Otero JM.
Barcia JC.
Estévez JC.
Estévez RJ.
Tetrahedron: Asymmetry
2005,
16:
11
<A NAME="RD06907ST-8">8</A>
Corey EJ.
Estreicher H.
J. Am. Chem. Soc.
1978,
100:
6294
<A NAME="RD06907ST-9">9</A>
All new compounds gave satisfactory analytical and spectroscopic data. Selected physical
and spectroscopic data follow.
Compound 6: mp 181-183 °C (MeOH). IR (NaCl): ν = 1673 (C=O), 1644 (C=O), 1540 (NO2), 1367 (NO2) cm-1. 1H NMR (CDCl3): δ = 1.38-1.64 (m, 2 H, CH2), 1.73-2.08 (m, 5 H, 2 × CH2 and CHH), 2.33-2.51 (m, 1 H, CHH), 3.71 (td, J = 11.6, 4.0 Hz, 1 H, CH), 5.40 (td, J = 11.6, 4.0 Hz, 1 H, CHNO2), 7.67 (td, J = 7.6, 1.5 Hz, 1 H, ArH), 7.76 (td, J = 7.6, 1.5 Hz, 1 H, ArH), 8.05 (dd, J = 7.6, 1.5 Hz, 1 H, ArH), 8.11 (dd, J = 7.6, 1.5 Hz, 1 H, ArH) ppm. 13C NMR (CDCl3): δ = 24.2 (CH2), 25.0 (CH2), 28.4 (CH2), 32.1 (CH2), 38.5 (CH), 85.9 (CHNO2), 121.6 (C), 126.2 (CH), 127.0 (CH), 129.0 (C), 132.7 (C), 133.1 (CH), 135.2 (CH),
153.4 (C), 181.0 (C=O), 183.7 (C=O) ppm. MS-FAB: m/z (%) = 302 (12) [MH+], 137 (100).
Compound 8: IR (NaCl): ν = 2935 (NH), 1681 (C=O) cm-1. 1H NMR (DMSO): δ = 1.16-2.27 (m, 8 H, 4 × CH2), 2.50-2.65 (m, 1 H, CH), 3.43-3.59 (m, 1 H, CH), 7.57-7.94 (m, 4 H, 4 × ArH), 9.21
(br s, 1 H, NH) ppm. 13C NMR (DMSO): δ = 24.3 (CH2), 25.3 (CH2), 28.4 (CH2), 30.0 (CH2), 47.5 (CH), 67.7 (CH), 115.7 (C), 124.2 (CH), 127.4 (C), 127.7 (CH), 131.5 (C),
131.6 (CH), 133.9 (CH), 161.1 (C), 171.2 (C=O), 183.6 (C=O) ppm. MS: m/z (%) = 253 (63) [M+], 195 (100).
Compound 9: IR (NaCl): ν = 2931 (NH), 1670 (C=O), 1628 (C=O) cm-1. 1H NMR (acetone): δ = 1.28-1.92 (m, 6 H, 3 × CH2), 2.20-2.31 (m, 1 H, CH), 2.56-2.74 (m, 2 H, CH2), 3.19-3.33 (m, 1 H, CH), 6.65 (br s, 1 H, NH), 7.68 (td, 1 H, J = 7.5, 1.6 Hz, ArH), 7.76 (td, 1 H, J = 7.5, 1.6 Hz, ArH), 7.91-7.99 (m, 2 H, 2 × ArH) ppm. 13C NMR (acetone): δ = 26.3 (CH2), 27.6 (CH2), 30.6 (CH2), 32.7 (CH2), 50.7 (CH), 70.3 (CH), 124.5 (C), 127.0 (CH), 127.1 (CH), 133.6 (CH), 135.8 (C),
135.9 (CH), 136.2 (C), 156.4 (C), 181.5 (C=O), 182.0 (C=O) ppm. MS: m/z (%) = 253 (91) [M+], 224 (100).
Compound 11a: mp 120-122 °C (MeOH). 1H NMR (CDCl3): δ = 1.45-2.18 (m, 6 H, 3 × CH2), 2.28-2.47 (m, 1 H, CHH), 2.53-2.74 (m, 1 H, CHH), 3.59 (dt, J = 13.0, 3.9 Hz, 1 H, CHAr), 3.91 (s, 3 H, OCH3), 3.96 (s, 3 H, OCH3), 5.07-5.16 (m, 1 H, CHNO2), 6.67 (s, 1 H, ArH), 7.43-7.59 (m, 2 H, 2 × ArH), 8.02 (d, J = 8.0 Hz, 1 H, ArH), 8.23 (d, J = 7.3 Hz, 1 H, ArH) ppm. 13C NMR (CDCl3): δ = 19.9 (CH2), 25.1 (CH2), 25.5 (CH2), 30.5 (CH2), 39.0 (CH), 55.6 (OCH3), 62.3 (OCH3), 86.1 (CHNO2), 102.6 (CH), 121.9 (CH), 122.4 (CH), 125.3 (CH), 125.9 (C), 126.5 (CH), 127.9 (C),
128.6 (C), 146.7 (C), 151.9 (C) ppm. MS: m/z (%) = 315 (100) [M+].
Compound 11b: mp 109-110 °C (MeOH). 1H NMR (CDCl3): δ = 1.42-2.14 (m, 6 H, 3 × CH2), 2.28-2.44 (m, 1 H, CHH), 2.50-2.69 (m, 1 H, CHH), 3.53 (dt, J = 13.1, 3.9 Hz, 1 H, CHAr), 3.85 (s, 3 H, OCH3), 3.92 (s, 3 H, OCH3), 3.95 (s, 3 H, OCH3), 5.06-5.13 (m, 1 H, CHNO2), 6.69 (s, 1 H, ArH), 6.84 (d, J = 7.9 Hz, 1 H, ArH), 7.40 (t, J = 7.9 Hz, 1 H, ArH), 7.62 (d, J = 7.9 Hz, 1 H, ArH) ppm. 13C NMR (CDCl3): δ = 19.8 (CH2), 25.0 (CH2), 25.4 (CH2), 30.5 (CH2), 38.9 (CH), 56.3 (OCH3), 56.8 (OCH3), 62.0 (OCH3), 85.9 (CH-NO2), 105.3 (CH), 106.2 (CH), 114.7 (CH), 117.8 (C), 126.6 (CH), 129.3 (C), 130.7 (C),
146.7 (C), 153.4 (C), 157.3 (C) ppm. MS: m/z (%) = 346 (94) [MH+], 299 (100).
Compound 15b: mp 300-301 °C (dec., CHCl3). 1H NMR (DMSO): δ = 1.60-1.82 (m, 4 H, 2 × CH2), 2.49-2.68 (m, 4 H, 2 × CH2), 4.03 (s, 3 H, OCH3), 7.20-7.31 (m, 1 H, ArH), 7.59-7.73 (m, 2 H, 2 × ArH), 11.95 (br s, 1 H, NH) ppm.
13C NMR (DMSO): δ = 21.5 (CH2), 22.0 (CH2), 22.2 (CH2), 22.6 (CH2), 56.0 (OCH3), 117.8 (C), 120.0 (C), 126.5 (CH), 128.8 (C), 130.0 (CH), 130.3 (C), 134.0 (C),
135.7 (CH), 139.2 (C), 158.7 (C), 176.3 (C=O), 181.3 (C=O) ppm. MS: m/z (%) = 281 (100) [M+].
<A NAME="RD06907ST-10">10</A>
Kobayasi K.
Taki T.
Kawakita M.
Uchida M.
Morikawa O.
Konishi H.
Heterocycles
1999,
51:
349
For previous similar cyclizations leading to oxygen heterocycles, see:
<A NAME="RD06907ST-11A">11a</A>
Lee YR.
Kang KY.
Lee GJ.
Lee WK.
Synthesis
2003,
1977
<A NAME="RD06907ST-11B">11b</A>
Lee YR.
Kim BS.
Synth. Commun.
2003,
33:
4123
<A NAME="RD06907ST-11C">11c</A>
Nair W.
Treesa PM.
Maliakal D.
Rath NP.
Tetrahedron
2001,
57:
7705
<A NAME="RD06907ST-12A">12a</A>
Kobayashi K.
Takeuchi H.
Seko S.
Suginome H.
Helv. Chim. Acta
1991,
74:
1091
<A NAME="RD06907ST-12B">12b</A>
Sullivan PJ.
Moreno R.
Murphy WS.
Tetrahedron Lett.
1992,
33:
535
<A NAME="RD06907ST-12C">12c</A>
Kobayashi K.
Takeuchi H.
Seko S.
Kanno Y.
Kujime SH.
Suginome S.
Helv. Chim. Acta
1993,
76:
2942
<A NAME="RD06907ST-12D">12d</A>
Mithani S.
Weeratunga G.
Taylor NJ.
Dmitrienko GI.
J. Am. Chem. Soc.
1994,
116:
2209
<A NAME="RD06907ST-12E">12e</A>
Tanaka K.
Takanohashi A.
Morikawa O.
Konishi H.
Kobayashi K.
Heterocycles
2001,
55:
1561
<A NAME="RD06907ST-12F">12f</A>
Wu Y.-L.
Chuang C.-P.
Lin P.-Y.
Tetrahedron
2001,
57:
5543
<A NAME="RD06907ST-13">13</A>
Kitani Y.
Morita A.
Kumamoto T.
Ishikawa T.
Helv. Chim. Acta
2002,
85:
1186