RSS-Feed abonnieren
DOI: 10.1055/s-2007-982558
An Efficient Synthesis of Enantiomerically Pure (1R,2S,5S)- and (1S,2R,5R)-Rosaprostol Methyl Esters
Publikationsverlauf
Publikationsdatum:
06. Juni 2007 (online)

Abstract
We report a concise synthesis of the enantiomerically pure 1,2-trans-1,5-cis-methyl esters of rosaprostol, a prostaglandin derivative used for the treatment of gastric and duodenal ulcers, using as key step the chemo- and stereoselective Michael addition of a Grignard reagent to an unprotected hydroxycyclopentenone.
Key words
cyclopentenones - Grignard reactions - Michael additions - stereoselective synthesis - prostanoids
- 1a
Valcavi U.Caponi R.Brambilla A.Palmira M.Minoja F.Bernini F.Musanti R.Fumagalli R. Arzneim.-Forsch. 1982, 32: 657Reference Ris Wihthout Link - 1b
Adami M.Scarpignato C.Signorini G.Coruzzi G.Bertaccini G. Farmaco Ed. Prat. 1984, 39: 409Reference Ris Wihthout Link - 1c
Fumagalli R.Caponi R.Corsini A.Brambilla A.Palmira M.Bernini F.Valcavi U. Prostaglandins 1985, 29: 467Reference Ris Wihthout Link - 1d
Tincani GP.Maniscalco G.Gunelli M.Ciarrocchi V. Minerva Medica 1987, 78: 847Reference Ris Wihthout Link - 1e
Aly A. Scand. J. Gastroenterol. 1987, Suppl. 137: 43Reference Ris Wihthout Link - 1f
Canonica GW.Ciprandi G.Scordamaglia A.Ruffoni S.Pizzorno G.Caria M.Cheli R. Ann. Allerg. 1988, 60: 541Reference Ris Wihthout Link - 1g
Di Murro R.Camarri E.Ciani D.Mariotti L.Nencioni C.Romagnoli AM. Int. J. Clin. Pharm. Res. 1988, 8: 345Reference Ris Wihthout Link - 1h
Foschi D.Trabucchi E.Galeone M.Ferrante F.Toti GL.Castoldi L.Musazzi M.Centenero A.Montorsi W. Int. J. Tissue React. 1988, 10: 53Reference Ris Wihthout Link - 1i
Ciprandi G.Ruffoni S.Ciani D.Tosca MA.Canonica GW. Int. J. Immunol. 1989, 5: 81Reference Ris Wihthout Link - 1j
Calcamuggi G.Babini G.Arduino C.Lanzio M.Anfossi G.Ciani D.Emanuelli G. Adv. Prostaglandin Thromboxane Leukotriene Res. 1991, 21B: 789Reference Ris Wihthout Link - 2a
Valcavi U. inventors; DE 2535343.Reference Ris Wihthout Link - 2b
Valcavi U,Innocenti S,Bosone E,Farina P,Marotta V, andZabban GB. inventors; EP 155392.Reference Ris Wihthout Link - 2c
Shono T.Kise N. Tetrahedron Lett. 1990, 31: 1303Reference Ris Wihthout Link - 2d
Shono T.Kise N.Fujimoto T.Tominaga N.Morita H. J. Org. Chem. 1992, 57: 7175Reference Ris Wihthout Link - 2e
Tanimori S.Kainuki T.Nakayama M. Biosci., Biotechnol., Biochem. 1992, 56: 1807Reference Ris Wihthout Link - 2f
Mikolajczyk M.Zurawinski R. J. Org. Chem. 1998, 63: 8894Reference Ris Wihthout Link - 2g
Mikolajczyk M.Mikina M.Zurawinski R. Pure Appl. Chem. 1999, 71: 473Reference Ris Wihthout Link - 2h
Trost BM.Pinkerton AB. Org. Lett. 2000, 2: 1601Reference Ris Wihthout Link - 2i
Mikolajczyk M.Mikina M.Jankowiak A.Mphahlele MJ. Synthesis 2000, 1075Reference Ris Wihthout Link - 2j
Trost BM.Pinkerton AB. J. Org. Chem. 2001, 66: 7714Reference Ris Wihthout Link - 2k
Mikolajczyk M. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177: 1839Reference Ris Wihthout Link - 2l
Ghosh AK.Bilcer G.Schiltz G. Synthesis 2001, 2203Reference Ris Wihthout Link - 2m
List B.Castello C. Synlett 2001, 1687Reference Ris Wihthout Link - 3 See for example:
Breuer M.Ditrich K.Habicher T.Hauer B.Kesseler M.Stürmer R.Zelinski T. Angew. Chem. Int. Ed. 2004, 43: 788 ; and references cited thereinReference Ris Wihthout Link - See for example:
- 4a
West FG.Gunawardena GU. J. Org. Chem. 1993, 58: 2402Reference Ris Wihthout Link - 4b
West FG.Gunawardena GU. J. Org. Chem. 1993, 58: 5043Reference Ris Wihthout Link - 4c
Johnson CR.Golebiowski A.Braun MP.Sundram H. Tetrahedron Lett. 1994, 35: 1833Reference Ris Wihthout Link - 4d
Pudukulathan Z.Manna S.Hwang S.-W.Khnapure SP.Lawson JA.FitzGerald GA.Rokach J. J. Am. Chem. Soc. 1998, 120: 11953Reference Ris Wihthout Link - 4e
Usami Y.Numata A. Synthesis 1999, 723Reference Ris Wihthout Link - 4f
Harmata M.Lee DR. J. Am. Chem. Soc. 2002, 124: 14328Reference Ris Wihthout Link - 4g
Rodriguez AR.Spur BW. Tetrahedron Lett. 2002, 43: 4575Reference Ris Wihthout Link - 5a
Harre M.Raddatz P.Walenta R.Winterfeld E. Angew. Chem., Int. Ed. Engl. 1982, 21: 480Reference Ris Wihthout Link - 5b
Collins PW.Djuric SW. Chem. Rev. 1993, 93: 1533Reference Ris Wihthout Link - 6a
Csaky AG.Mba M.Plumet J. J. Org. Chem. 2001, 66: 9026Reference Ris Wihthout Link - 6b
Csaky AG.Contreras C.Mba M.Plumet J. Synlett 2002, 1451Reference Ris Wihthout Link - 6c
Csaky AG.Mba M.Plumet J. Synlett 2003, 2092Reference Ris Wihthout Link - 7
Rodríguez A.Nomen M.Spur BW.Godfroid JJ. Eur. J. Org. Chem. 1999, 2655Reference Ris Wihthout Link - 9
Babiak KA.Ng JS.Dygos JH.Weyker CL. J. Org. Chem. 1990, 55: 3377Reference Ris Wihthout Link - 11 For a recent preparation of (+)-2 from methyl oleate and 2,3-O-isopropylidene-d-glyceraldehyde, see:
Muhammad Nor O.Hamilton RJ. J. Palm Oil Res. 2004, 16: 37Reference Ris Wihthout Link - 14
Csaky AG.Mba M.Plumet J. Tetrahedron: Asymmetry 2004, 15: 647Reference Ris Wihthout Link - 19 For a previous use of L-Selectride with KH2PO4 as proton source to convert an enone into an alcohol, see:
Bell RA.Turner JV. Tetrahedron Lett. 1981, 22: 4871Reference Ris Wihthout Link
References and Notes
According to ref. 7, condensation of furan with suberic acid monomethyl ester afforded the corresponding furylketone, which was reduced to methyl-8-(2-furyl)-8-hydroxy-octanoate. This was transformed into methyl 7-(2-hydroxy-5-oxocyclopent-3-enyl)heptanoate by a Nazarov cyclization. Isomerization to rac-2 was best performed upon treatment with an aqueous phosphate buffer solution: To a solution of methyl 7-(2-hydroxy-5-oxocyclopent-3-enyl)heptanoate (1.28 g, 5.33 mmoL) in 1,4-dioxane (50 mL) was added a phosphate buffer solution (pH 8, 37 mL) and the mixture was heated at reflux for 30 h. Concentration under reduced pressure followed by extraction with EtOAc afforded an oil which was purified by chromatography (hexane-EOtAc, 8:2) to give rac-2 in 80% yield.
10Enzymatic resolution of 2 was carried out according to ref. 9. For a more recent report of the resolution of 2, see ref. 7. Compounds (+)-2 and (-)-2 are commercially available (Aldrich).
12
(-)-Methyl 7-[(1
R
,2
R
,3
S
)-2-Hexyl-3-hydroxy-5-oxocyclopentyl]heptanoate [(-)-3]
[α]D
25 -22 (c 3.5, CHCl3). R
f
= 0.22 (CH2Cl2-EtOAc, 8:2). 1H NMR (300 MHz, CDCl3): δ = 4.48 (m, 1 H), 3.67 (s, 3 H), 2.36-2.28 (m, 4 H), 2.13-2.05 (m, 1 H), 1.90-1.80
(m, 1 H), 1.66-1.50 (m, 8 H), 1.38-1.25 (m, 12 H), 0.93 (t, J = 6.6 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 219.8 (s), 175.0 (s), 75.2 (d), 51.8 (q), 50.6 (d), 48.6 (d), 47.0 (t), 39.7
(t), 32.5 (t), 30.5 (t), 30.0 (t), 28.6 (t), 28.3 (t), 27.6 (t), 27.02 (t), 26.8 (t),
23.8 (t), 23.1 (t), 14.5 (q) ppm.
(+)-Methyl 7-[(1
R
,2
S
)-2-Hexyl-5-oxocyclopent-3-enyl)heptanoate [(+)-4]
[α]D
25 +34 (c 2.7, CHCl3). R
f
= 0.89 (CH2Cl2-EtOAc, 8:2). 1H NMR (300 MHz, CDCl3): δ = 7.60 (dd, 3
J = 1.59 Hz, 3
J = 5.67 Hz, 1 H), 6.1 (dd, 3
J = 1.68 Hz, 3
J = 5.70 Hz, 1 H), 3.67 (s, 3 H), 2.62-2.53 (m, 1 H), 2.30 (t, J = 7.35 Hz, 2 H), 1.98-1.89 (m, 1 H), 1.65-1.56 (m, 2 H), 1.37-1.23 (m, 18 H), 0.91-0.86
(m, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 212.9 (s), 174.6 (s), 167.7 (d), 133.2 (d), 52.2 (d), 51.8 (q), 48.6 (d), 35.0
(t), 34.4 (t), 32.2 (t), 32.1 (t), 31.6 (t), 29.8 (t), 29.3 (t), 27.2 (t), 25.3 (t),
23.1 (t), 22.9 (t), 14.5 (q) ppm.
To a suspension of LiCl (0.52 mmol) in THF (0.75 mL) at 0 °C was added hexylmagnesium bromide (2 M solution in Et2O, 0.26 mL) and the mixture was stirred for 5 min. A solution of (-)-2 (0.23 mmol) in THF (0.75 mL) was added dropwise. The mixture was stirred at 0-10 °C for 18 h, and hydrolyzed with sat. NH4Cl. The organic layer was decanted and the aqueous layer extracted with Et2O. The combined organic layers were dried on MgSO4. Filtration and elimination of the solvent under reduced pressure afforded an oil that was purified by chromatography (CH2Cl2-EtOAc, 8:2).
16To a solution of (-)-3 (0.14 mmol) in Et2O (2.2 mL) was added PTSA (0.035 mmol) and the solution was stirred at 25 °C for 18 h. The mixture was diluted with Et2O and washed with sat. NaHCO3 and brine. The organic layer was dried over MgSO4 and the solvent was eliminated under reduced pressure. The resulting oil was purified by chromatography (CH2Cl2-EtOAc, 8:2).
17To a solution of (-)-2 (0.23 mmol) in THF (0.75 mL) at 0 °C was added dropwise a 2 M solution of hexylmagnesium bromide in Et2O (0.26 mL). The mixture was stirred from 0 °C to 30 °C for 36 h, and hydrolyzed with sat. NH4Cl solution. The organic layer was decanted and the aqueous layer extracted with Et2O. The combined organic layers were dried over MgSO4. Filtration and elimination of the solvent under reduced pressure afforded an oil that was purified by chromatography (CH2Cl2-EtOAc, 8:2).
18To a solution of L-Selectride (0.3 mL) in THF (0.3 mL) at -78 °C was added dropwise a solution of 3 (0.1 mmol) in t-BuOH (20 µL) and THF (0.5 mL) and the mixture was stirred at -78 °C for 1 h. The mixture was hydrolyzed with sat. NH4Cl solution at -78 °C. The organic layer was decanted and the aqueous layer extracted with Et2O. The combined organic layers were dried over MgSO4. Filtration and elimination of the solvent under reduced pressure afforded an oil that was purified by chromatography (hexane-EtOAc, 8:2).
20
(+)-Methyl 7-[(1
R
,2
S
,5
S
)-2-Hexyl-5-hydroxycyclopentyl]heptanoate [(+)-1]
[α]D
25 +13 (c 0.6, CHCl3). R
f
= 0.43 (hexane-EtOAc, 8:2). 1H NMR (300 MHz, CDCl3): δ = 4.25-4.18 (m,1 H), 3.68 (s, 3 H), 2.31 (t, J = 7.35 Hz, 2 H), 2.07-1.91 (m, 1 H), 1.91-1.77 (m, 1 H), 1.67-1.54 (m, 4 H), 1.37-1.22
(m, 20 H), 0.91-0.87 (m, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 174.8 (s), 74.8 (d), 51.9 (q), 42.3 (d), 39.6 (d), 35.5 (t), 34.5 (t), 33.9
(t), 32.3 (t), 32.3 (t), 30.1 (t), 29.5 (t), 29.4 (t), 28.7 (t), 28.6 (t), 28.0 (t),
25.3 (t), 23.1 (t), 14.5 (q) ppm.
The cis relative stereochemistry of the OH and R1 groups in (+)-1 was unambiguously determined by COSY and NOE measurements. Saturation of the H5 signal (δ = 4.25-4.18 ppm, m, 1 H) afforded a 4% increase of the H2 signal (δ = 1.91-1.77 ppm, m, 1 H).