References and Notes
<A NAME="RG10607ST-1">1</A>
Torisu K.
Kobayashi K.
Iwahashi M.
Nakai Y.
Onoda T.
Nagase T.
Sugimoto I.
Okada Y.
Matsumoto R.
Nanbu F.
Ohuchida S.
Nakai H.
Toda M.
Bioorg. Med. Chem.
2004,
12:
5361
<A NAME="RG10607ST-2">2</A>
Ohtake Y.
Naito A.
Hasegawa H.
Kawano K.
Morizono D.
Taniguchi M.
Tanaka Y.
Matsukawa H.
Naito K.
Oguma T.
Ezure Y.
Tsuriya Y.
Bioorg. Med. Chem.
1999,
7:
1247
<A NAME="RG10607ST-3A">3a</A>
Barrows TH.
Farina PR.
Chrzanowski RL.
Benkovic PA.
Benkovic SJ.
J. Am. Chem. Soc.
1976,
98:
3678
<A NAME="RG10607ST-3B">3b</A>
Fisher GH.
Schultz HP.
J. Org. Chem.
1974,
39:
631
<A NAME="RG10607ST-3C">3c</A>
Benkovic SJ.
Barrows TH.
Farina PR.
J. Am. Chem. Soc.
1973,
95:
8414
<A NAME="RG10607ST-4A">4a</A>
Pitts MR.
Harrison JR.
Moody CJ.
J. Chem. Soc., Perkin Trans. 1
2001,
955
<A NAME="RG10607ST-4B">4b</A>
Taylor EC.
McKillop A.
J. Am. Chem. Soc.
1965,
87:
1984
<A NAME="RG10607ST-4C">4c</A>
Cavagnol JC.
Wiselogle FY.
J. Am. Chem. Soc.
1947,
69:
795
<A NAME="RG10607ST-5A">5a</A>
Yang S.-C.
Liu P.-C.
Feng W.-H.
Tetrahedron Lett.
2004,
45:
4951
<A NAME="RG10607ST-5B">5b</A>
Yang S.-C.
Shue Y.-J.
Liu P.-C.
Organometallics
2002,
21:
2013
<A NAME="RG10607ST-5C">5c</A>
Massacret M.
Lhoste P.
Sinou D.
Eur. J. Org. Chem.
1999,
129
<A NAME="RG10607ST-6">6</A>
Nair V.
Dhanya R.
Rajesh C.
Bhadbhade MM.
Manoj K.
Org. Lett.
2004,
6:
4743
<A NAME="RG10607ST-7">7</A>
Bunce RA.
Herron DM.
Ackerman ML.
J. Org. Chem.
2000,
65:
2847
<A NAME="RG10607ST-8A">8a</A>
Bunce RA.
Herron DM.
Hale LY.
J. Heterocycl. Chem.
2003,
40:
1031
<A NAME="RG10607ST-8B">8b</A>
Rylander PN.
Hydrogenation Methods
Academic Press;
New York:
1985.
p.82-93
<A NAME="RG10607ST-9">9</A>
Tapia RA.
Centella CR.
Valderrama JA.
Synth. Commun.
1999,
29:
2163
<A NAME="RG10607ST-10A">10a</A>
LaBarbera DV.
Skibo EB.
Bioorg. Med. Chem.
2005,
13:
387
<A NAME="RG10607ST-10B">10b</A>
Krchňák V.
Smith J.
Vagner J.
Tetrahedron Lett.
2001,
42:
2443
<A NAME="RG10607ST-11">11</A>
Meriσor E.
Conrad J.
Klaiber I.
Mika S.
Beifuss U.
Angew. Chem. Int. Ed.
2007,
46:
3353
<A NAME="RG10607ST-12">12</A>
Selected Data for 2a (Figure
[3]
):
R
f
0.40 (PE-EtOAc, 20:1). IR (ATR): 3376 (NH), 2952, 2854 (Me, CH2), 1691 (C=O), 1604, 1501 (C=C), 1435, 1382, 1372 (COO-), 1232, 1211, 1146, 1061 (=COC), 900, 760, 741 cm-1. UV-Vis (EtOH): λmax (log ε) = 307 (2.48), 253 (2.40), 220 (2.34) nm. 1H NMR (300 MHz, CDCl3): δ = 1.85 (s, 3 H, 3′-Me), 3.58 (dd, 2
J = 12.3 Hz, 3
J = 6.2 Hz, 1 H, 2-H), 3.81 (s, 3 H, OMe), 3.98 (dd, 3
J = 3.4, 6.2 Hz, 1 H, 3-H), 4.02 (dd, 2
J = 12.3 Hz, 3
J = 3.3 Hz, 1 H, 2-H), 4.98 (br s, 1 H, 2′-H), 5.05 (br s, 1 H, 2′-H), 6.65 (dd, 3
J = 8.0 Hz, 4
J = 1.4 Hz, 1 H, 5-H), 6.70 (ddd, 3
J = 7.4, 8.2 Hz, 4
J = 1.5 Hz, 1 H, 7-H), 6.97 (ddd, 3
J = 7.4, 7.9 Hz, 4
J = 1.4 Hz, 1 H, 6-H), 7.48 (br s, 1 H, 8-H). 13C NMR (75 MHz, CDCl3): δ = 19.57 (C-3′), 45.25 (C-2), 53.24 (OMe), 56.72 (C-3), 112.87 (C-2′), 114.4 (C-5),
116.9 (C-7), 123.9 (C-9), 124.61 (C-8), 125.4 (C-6), 137.09 (C-10), 144.3 (C-1′),
155.3 (C=O). MS (EI, 70 eV): m/z (%) = 232 (100) [M+], 218 (8), 199 (14), 191 (40), 173 (21), 157 (18), 131 (40), 106 (7), 77 (7). Anal.
Calcd for C13H16N2O2: C, 67.22; H, 6.94; N, 12.06. Found: C, 67.43; H, 7.01; N, 11.99.
Figure 4
<A NAME="RG10607ST-13">13</A>
Selected Data for 3a (Figure
[4]
):
R
f
0.59 (PE-EtOAc, 20:1). IR (ATR): 2980, 2958 (Me, CH2), 1702 (C=O), 1602, 1504 (C=C), 1438, 1375, 1344 (COO-), 1217, 1190, 1145, 1062 (=COC), 899, 733 cm-1. UV-Vis (EtOH): λmax (log ε) = 310 (2.49), 258 (2.41), 223 (2.35) nm. 1H NMR (300 MHz, CDCl3): δ = 1.17 (t, 3
J = 7.1 Hz, 3 H, 2′′-Me), 1.80 (s, 3 H, 3′-Me), 3.15-3.27 (over-lapped, 2 H, 1′′-CH2), 3.52 (dd, 2
J = 13.1 Hz, 3
J = 7.1 Hz, 1 H, 2-H), 3.76 (s, 3 H, OMe), 3.94 (t, 3
J = 7.1 Hz, 1 H, 3-H), 4.37 (dd, 2
J = 12.9 Hz, 3
J = 7.1 Hz, 1 H, 2-H), 4.81 (br s, 1 H, 2′-H), 4.93 (br s, 1 H, 2′-H), 6.62 (dd, 3
J = 8.1 Hz, 4
J = 1.1 Hz, 1 H, 5-H), 6.75 (ddd, 3
J = 7.8, 8.1 Hz, 4
J = 1.2 Hz, 1 H, 7-H), 7.06 (ddd, 3
J = 7.8, 8.1 Hz, 4
J = 1.2 Hz, 1 H, 6-H), 7.4 (br s, 1 H, 8-H). 13C NMR (75 MHz, CDCl3): δ = 11.76 (C-2′′), 19.60 (C-3′), 43.50 (C-1′′), 43.82 (C-2), 53.12 (OMe), 62.76
(C-3), 110.56 (C-2′), 113.5 (C-5), 115.1 (C-7), 124.3 (C-9), 124.7 (C-8), 125.8 (C-6),
137.9 (C-10), 143.06 (C-1′), 155.4 (C=O). MS (EI, 70 eV): m/z (%) = 260 (100) [M+], 245 (16), 231 (26), 219 (58), 213 (12), 190 (34), 171 (20), 159 (30), 131 (27),
119 (6), 92 (3), 77 (12), 41 (3), 28 (3). HRMS (EI): m/z [M+] calcd for C15H20N2O2: 260.1525; found: 260.1507.
<A NAME="RG10607ST-14">14</A>
Adam W.
Krebs O.
Chem. Rev.
2003,
103:
4131
<A NAME="RG10607ST-15A">15a</A>
Söderberg BCG.
Curr. Org. Chem.
2000,
4:
727
<A NAME="RG10607ST-15B">15b</A>
Cadogan JIG.
Q. Rev., Chem. Soc.
1968,
22:
222
<A NAME="RG10607ST-16">16</A>
Scheme
[3]
shows a mechanism involving a triplet nitrene. However, the occurrence of a singlet
nitrene cannot be ruled out.
<A NAME="RG10607ST-17A">17a</A>
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
<A NAME="RG10607ST-17B">17b</A>
Appukkuttan P.
Van der Eycken E.
Dehaen W.
Synlett
2005,
127
<A NAME="RG10607ST-18">18</A>
General Procedure for the Synthesis of Alkenyl-1,2,3,4-tetrahydroquinoxalines under
Microwave Conditions:
A solution of 1a (1 mmol), (EtO)3P (6 mmol) and toluene (3 mL) in a 10-mL septum-sealed reaction vial was irradiated
with microwaves (DiscoverTM by CEM; 2450 MHz; 300 W; 200 °C). After removal of (EtO)3P and (EtO)3PO (10-1 mbar) the residue was taken up in EtOAc (25 mL) and washed with brine (3 × 20 mL).
The residue obtained after drying over MgSO4 and after concentration in vacuo was purified by flash chromatography on silica gel
(PE-EtOAc, 20:1).
<A NAME="RG10607ST-19">19</A>
Hoeke F.
Recl. Trav. Chim. Pays-Bas
1935,
54:
505
<A NAME="RG10607ST-20">20</A>
Mohri K.
Suzuki K.
Usui M.
Isobe K.
Tsuda Y.
Chem. Pharm. Bull.
1995,
43:
159
<A NAME="RG10607ST-21">21</A>
Greshock TJ.
Funk RL.
J. Am. Chem. Soc.
2002,
124:
754
<A NAME="RG10607ST-22">22</A>
Broggini G.
Garanti L.
Molteni G.
Zecchi G.
Synthesis
1996,
1076