References and Notes
<A NAME="RG18807ST-1A">1a</A>
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
<A NAME="RG18807ST-1B">1b</A>
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
1st ed.:
Wiley-VCH;
Weinheim:
2005.
<A NAME="RG18807ST-2">2</A>
Palomo C.
Oiarbide M.
Garcia JM.
Chem. Soc. Rev.
2004,
33:
65
<A NAME="RG18807ST-3A">3a</A>
List B.
Acc. Chem. Res.
2004,
37:
548
<A NAME="RG18807ST-3B">3b</A>
List B.
Hoang L.
Martin HJ.
Proc. Natl. Acad. Sci. U. S. A.
2004,
101:
5839
<A NAME="RG18807ST-3C">3c</A>
Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
<A NAME="RG18807ST-3D">3d</A>
Steiner DD.
Mase N.
Barbas CF.
Angew. Chem. Int. Ed.
2005,
44:
3706
<A NAME="RG18807ST-3E">3e</A>
Northrup AB.
MacMillan DWC.
Science
2004,
305:
1752
<A NAME="RG18807ST-3F">3f</A>
Ouellet SG.
Tuttle JB.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
32
<A NAME="RG18807ST-3G">3g</A>
Marigo M.
Fielenbach D.
Braunton A.
Kjoersgaard A.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
3703
<A NAME="RG18807ST-3H">3h</A>
Marigo M.
Wabnitz TC.
Fielenbach D.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
794
<A NAME="RG18807ST-3I">3i</A>
Tang Z.
Jiang F.
Yu LT.
Cui X.
Gong LZ.
Mi AQ.
Jiang YZ.
Wu YD.
J. Am. Chem. Soc.
2003,
125:
5262
<A NAME="RG18807ST-3J">3j</A>
Tang Z.
Jiang F.
Cui X.
Gong LZ.
Mi AQ.
Jiang YZ.
Wu YD.
Proc. Natl. Acad. Sci. U. S. A.
2004,
101:
5755
<A NAME="RG18807ST-3K">3k</A>
Tang Z.
Yang ZH.
Chen XH.
Cun LF.
Mi AQ.
Jiang YZ.
Gong LZ.
J. Am. Chem. Soc.
2005,
127:
9285
<A NAME="RG18807ST-3L">3l</A>
Torii H.
Nakadai M.
Ishihara K.
Saito S.
Yamamoto H.
Angew. Chem. Int. Ed.
2004,
43:
1983
<A NAME="RG18807ST-3M">3m</A>
Saito S.
Yamamoto H.
Acc. Chem. Res.
2004,
37:
570
<A NAME="RG18807ST-4A">4a</A>
Heine A.
DeSantis G.
Luz JG.
Mitchell M.
Wong CH.
Wilson IA.
Science
2001,
294:
369
<A NAME="RG18807ST-4B">4b</A>
Zhu X.
Tanaka F.
Hu Y.
Heine A.
Fuller R.
Zhong G.
Olson AJ.
Lerner RA.
Barbas CF.
Wilson IA.
J. Mol. Biol.
2004,
343:
1269
<A NAME="RG18807ST-5A">5a</A>
Machajewski TD.
Wong CH.
Angew. Chem. Int. Ed.
2000,
39:
1352
<A NAME="RG18807ST-5B">5b</A>
Wymer N.
Toone EJ.
Curr. Opin. Chem. Biol.
2000,
4:
110
<A NAME="RG18807ST-5C">5c</A>
Zhong G.
Lerner RA.
Barbas CF.
Angew. Chem. Int. Ed.
1999,
38:
3738
<A NAME="RG18807ST-6A">6a</A>
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J. Am. Chem. Soc.
2006,
128:
734
<A NAME="RG18807ST-6B">6b</A>
Mase N.
Watanabe K.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J. Am. Chem. Soc.
2006,
128:
4966
<A NAME="RG18807ST-6C">6c</A>
Hayashi Y.
Sumiya T.
Takahashi J.
Gotoh H.
Urushima T.
Shoji M.
Angew. Chem. Int. Ed.
2006,
45:
958
<A NAME="RG18807ST-6D">6d</A>
Wu YY.
Zhang YZ.
Yu ML.
Zhao G.
Wang SW.
Org. Lett.
2006,
8:
4417
<A NAME="RG18807ST-6E">6e</A>
Font D.
Jimeno C.
Pericàs MA.
Org. Lett.
2006,
8:
4653
<A NAME="RG18807ST-6F">6f</A>
Maya V.
Raj M.
Singh VK.
Org. Lett.
2007,
9:
2593
<A NAME="RG18807ST-6G">6g</A>
Wu X.
Jiang Z.
Shen HM.
Lu X.
Adv. Synth. Catal.
2007,
349:
812
<A NAME="RG18807ST-7A">7a</A>
Brogan AP.
Dickerson TJ.
Janda KD.
Angew. Chem. Int. Ed.
2006,
45:
8100
<A NAME="RG18807ST-7B">7b</A>
Hayashi Y.
Angew. Chem. Int. Ed.
2006,
45:
8103
<A NAME="RG18807ST-7C">7c</A>
Blackmond DG.
Armstrong A.
Coombe V.
Wells A.
Angew. Chem. Int. Ed.
2007,
46:
2
<A NAME="RG18807ST-8">8</A>
Calderón F.
Ferández R.
Sánchez F.
Fernández-Mayoralas A.
Adv. Synth. Catal.
2005,
347:
1395
<A NAME="RG18807ST-9">9</A>
Synthesis of 6
To a solution of 5 (70.8 mg, 0.2 mmol) in CH2Cl2 (1 mL) was added solid 1-adamantane carboxylic acid chloride 4 (44 mg, 0.22 mmol) at 0 °C, followed by addition of DIPEA (52 mg, 0.4 mmol). The
reaction mixture was stirred for 4 h at r.t. and finally diluted with CH2Cl2 (5 mL). The organic phase was washed consecutively with 1 N HCl, H2O, brine and dried over Na2SO4.The solvent was removed under reduced pressure. Purification of the residue by flash
chromatog-raphy using hexane-EtOAc (2:1) affords 6 as an oil (96 mg, 93%); [α]D
25 -32.1 (c 0.88, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.23-7.37 (m, 10 H), 6.65 (d, 1 H, J = 9.2 Hz), 4.95-5.34 (m, 4 H), 4.69 (m, 1 H), 4.41-4.50 (m, 1 H), 3.51-3.71 (m, 2
H), 2.41-2.50 (m, 1 H), 2.00 (m, 3 H), 1.91 (m, 1 H), 1.63-1.73 (m, 12 H). 13C NMR (100 MHz, CDCl3): δ = 177.86, 177.78, 174.45, 155.16, 154.52, 136.65, 136.57, 135.68, 135.44, 129.06,
128.98, 128.94, 128.89, 128.57, 128.52, 128.44, 128.38, 128.23, 67.82, 67.73, 58.66,
58.20, 54.41, 54.12, 48.70, 47.72, 40.87, 40.86, 39.27, 39.26, 37.39, 36.87, 36.32,
28.47. ESI-MS: m/z = 539.2 [M + Na]+, 555.1 [M + K]+. Anal. Calcd (%) for C31H36N2O5: C, 72.07; H, 7.02; N, 5.42. Found: C, 71.27; H, 7.09; N, 5.20.
<A NAME="RG18807ST-10">10</A>
Synthesis of 1
To a solution of compound 6 (96 mg, 0.186 mmol) in MeOH (2 mL) was added 10% Pd/C (30 mg). The reaction mixture
was stirred for 5 h under hydrogen, subsequently filtered through Celite and the catalyst
was washed with MeOH three times. The combined organic solutions were concentrated
under reduced pressure to afford the proline derivative 1 as a colorless solid (54 mg, 100%); mp 230-232 °C; [α]D
25 -32.9 (c 0.5, MeOH). 1H NMR (400 MHz, DMSO-d
6): δ = 7.60 (d, 1 H, J = 6.8 Hz), 4.34 (m, 1 H), 4.15 (t, 1 H, J = 8.4 Hz), 3.28 (dd, 1 H, J = 11.2, 7.2 Hz), 3.10 (dd, 1 H, J = 11.2, 6.0 Hz), 2.46 (m, 1 H), 1.91 (m, 4 H), 1.58-1.72 (m, 12 H). 13C NMR (100 MHz, DMSO-d
6): δ = 177.93, 170.99, 58.99, 49.98, 48.50, 39.30, 36.94, 34.67, 28.43. ESI-MS: m/z = 293.4 [M + 1]+. Anal. Calcd (%) for C16H24N2O3: C, 65.73; H, 8.27; N, 9.58. Found: C, 65.66; H, 8.18; N, 9.44.
<A NAME="RG18807ST-11">11</A>
Spectroscopic Data of Inclusion Complex 3
1H NMR (600 MHz, D2O): δ = 5.04 (d, 7 H, H-1′), 4.55 (m, 1 H, H-γ), 4.22 (dd, 1 H, H-α), 3.89 (m, 7 H,
H-6′′), 3.87 (m, 7 H, H-3′), 3.84 (m, 7 H, H-6′), 3.75 (m, 7 H, H-5′), 3.64 (dd, 7
H, H-2′), 3.60 (dd, 1 H, H-δ cis), 3.56 (dd, 7 H, H-4′), 3.46 (dd, 1 H, H-δ trans), 2.66 (m, 1 H, H-β cis), 2.20 (m, 1 H, H-β trans to Hα), 2.18 (s, 3 H, H-3), 1.91 (s, 6 H, H-2), 1.78 (s, 6 H, H-4). 1H NMR (600 MHz, H2O): δ = 7.37 (d, 1 H, NHC=O). 13C NMR (151 MHz, D2O): δ = 180.7 (NHC=O), 174.3 (COOH), 102.7 (C-1′), 81.9 (C-4′), 73.5 (C-3′), 72.4
(C-2′), 72.3 (C-5′), 60.6 (C-α), 60.5 (C-6′), 50.4 (C-δ), 49.2 (C-γ), 40.9 (C-1),
38.9 (C-2), 36.8 (C-4), 34.8 (C-β), 27.8 (C-3).
<A NAME="RG18807ST-12">12</A>
Hwang TL.
Shaka AJ.
J. Magn. Reson., Ser. A
1995,
112:
275
<A NAME="RG18807ST-13">13</A>
The NOESY spectrum was acquired on an equimolar mixture of 1 and 2 in D2O using a mixing time of 500 ms and 512 (142 ms) and 2048 (285 ms) points (acquisition
times) in the F1 and the F2 dimension. Assignment of the resonances of this complex
was accomplished using standard COSY, HMQC, and HMBC pulse sequences. NMR data were
processed using Bruker XWINNMR software.
<A NAME="RG18807ST-14">14</A>
General Procedure for the Aldol Reaction Catalyzed by the Inclusion Complex of 1 and
β-Cyclodextrin 2
To a suspension of the proline derivative 1 (5.84 mg, 0.02 mmol) in H2O (0.2 mL) was added β-cyclodextrin 2 (22.7 mg, 0.02 mmol) and stirred for 10 min at r.t. until a clear solution was obtained;
then cyclohexanone (80 µL, 0.8 mmol) was added. The reaction mixture was stirred at
r.t. for further 10 min and subsequently aldehyde 7 (0.2 mol) was added. The reaction mixture was stirred for 3-96 h (TLC monitoring
the consumption of aldehyde). The reaction was quenched with aq NH4Cl and extracted with EtOAc. The combined organic layers were washed with H2O and brine, dried over Na2SO4. Purification by flash chromatography (silica gel, hexane-EtOAc, 2:1) gave the pure
aldol products for further analysis.
For Recycle Case
After the completion of reaction, the reaction mixture was directly extracted with
CH2Cl2 for three times. The aqueous-phase-containing catalyst was reused again for next
time after removing a little amount of CH2Cl2 under reduced pressure.
<A NAME="RG18807ST-15">15</A>
Absolute configuration of the aldol products anti-9 were determined by optical rotation in comparison to reported values6 except compound 9h.
The following are the analytical data of 2-hydroxy-methylene-(2′,6′-dichlorophenyl)
cyclohexanone (9h):
anti-9h: 1H NMR (400 MHz, CDCl3): δ = 7.29 (m, 2 H), 7.13 (m, 1 H), 5.82 (dd, 1 H, J = 9.6, 4.4 Hz), 3.67 (d, 1 H, J = 4.4 Hz), 3.46-3.49 (m, 1 H), 2.35-2.52 (m, 2 H), 2.05-2.09 (m, 1 H), 1.78-1.82
(m, 1 H), 1.62-1.69 (m, 2 H), 1.49-1.53 (m, 1 H), 1.34-1.41 (m, 1 H).
13C NMR (100 MHz, CDCl3): δ = 214.85, 136.08, 135.10, 129.92, 70.97, 54.04, 42.85, 30.26, 28.04, 25.10. ESI-MS:
m/z (%) = 295.3 (100) [M + Na]+. The ee of anti-9h (97%) was determined by HPLC with a Chiralpak AD-H column (heptane-2-PrOH, 90:10),
20 °C, 210 nm, 0.5 mL/min; major enantiomer t
R = 24.2 min, minor enantiomer t
R = 30.9 min.
syn-9h: 1H NMR(400 MHz, CDCl3): δ = 7.08-7.31 (m, 3 H), 5.73 (t, 1 H, J = 7.6 Hz), 3.27-3.33 (m, 1 H), 2.84 (d, 1 H, J = 7.6 Hz), 1.17-2.40 (m, 8 H). The ee was determined by HPLC with a Chiralpak AD-H
column (heptane-2-PrOH, 90:10), 20 °C, 210 nm, 0.5 mL/min, one enantiomer t
R = 20.2 min, another enantiomer t
R = 22.1 min.