References and Notes
<A NAME="RG26107ST-1">1</A>
Erasmus student from Uniwersytet Jagielloński, ul. Golebia 24, 31-007 Cracow, Poland
<A NAME="RG26107ST-2A">2a</A>
Lavilla R.
J. Chem. Soc., Perkin Trans. 1
2002,
1141
<A NAME="RG26107ST-2B">2b</A>
Sausins A.
Duburs G.
Heterocycles
1988,
27:
269
<A NAME="RG26107ST-3A">3a</A>
Meguro K.
Aizawa M.
Sohda T.
Kawamatsu Y.
Nagaoka A.
Chem. Pharm. Bull.
1985,
33:
3787
<A NAME="RG26107ST-3B">3b</A>
Triggle DJ.
Cell. Mol. Neurobiol.
2003,
23:
293
<A NAME="RG26107ST-3C">3c</A>
De Simone RW.
Currie KS.
Mitchell SA.
Darrow JW.
Pippin DA.
Comb. Chem. High Throughput Screening
2004,
7:
473
<A NAME="RG26107ST-3D">3d</A>
Loev B.
Ehrreich SJ.
Tedeschi RE.
J. Pharm. Pharmacol.
1972,
24:
917
<A NAME="RG26107ST-3E">3e</A>
Harrold M. In Foye’s Principles of Medicinal Chemistry
5th ed.:
Williams DA.
Lemke TL.
Lippincott Williams and Wilkins;
Baltimore:
2002.
p.533
<A NAME="RG26107ST-3F">3f</A>
Mojarrad JS.
Vo D.
Velázquez C.
Knaus EE.
Bioorg. Med. Chem.
2005,
13:
4085
<A NAME="RG26107ST-4">4</A>
Hantzsch A.
Justus Liebigs Ann. Chem.
1882,
1:
215
For some recent examples, see:
<A NAME="RG26107ST-5A">5a</A>
Wang G.-W.
Xia J.-J.
Miao C.-B.
Wu X.-L.
Bull. Chem. Soc. Jpn.
2006,
79:
454
<A NAME="RG26107ST-5B">5b</A>
Maheswara M.
Siddaiah V.
Raob YK.
Tzeng Y.-M.
Sridhar C.
J. Mol. Catal. A: Chem.
2006,
260:
179
<A NAME="RG26107ST-5C">5c</A>
Zolfigol MA.
Safaiee M.
Synlett
2004,
827
<A NAME="RG26107ST-5D">5d</A>
Yadav JS.
Reddy BVS.
Basak AK.
Narsaiah AV.
Green Chem.
2003,
5:
60
<A NAME="RG26107ST-5E">5e</A>
Sabitha G.
Reddy GSKK.
Reddy CS.
Yadav JS.
Tetrahedron Lett.
2003,
44:
4129
<A NAME="RG26107ST-6A">6a</A>
Geirsson JFK.
Johannesdottir JF.
J. Org. Chem.
1996,
61:
7320 ; and previous works cited therein
<A NAME="RG26107ST-6B">6b</A>
Vohra RK.
Bruneau C.
Renaud J.-L.
Adv. Synth. Catal.
2006,
348:
2571
<A NAME="RG26107ST-6C">6c</A>
Sridharan V.
Perumal PT.
Avendaño C.
Menéndez JC.
Tetrahedron
2007,
63:
4407
<A NAME="RG26107ST-7">7</A>
Taylor MD.
Himmelsbach RJ.
Kornberg BE.
Quin J.
Lunney E.
Michel A.
J. Org. Chem.
1989,
54:
5585
<A NAME="RG26107ST-8A">8a</A>
Bartoli G.
Bosco M.
Dalpozzo R.
Marcantoni E.
Massaccesi M.
Sambri L.
Eur. J. Org. Chem.
2003,
4611
<A NAME="RG26107ST-8B">8b</A>
Bartoli G.
Bosco M.
Carlone A.
Dalpozzo R.
Locatelli M.
Melchiorre P.
Sambri L.
J. Org. Chem.
2006,
71:
9580
<A NAME="RG26107ST-8C">8c</A>
Shivani .
Pujala B.
Chakraborti AK.
J. Org. Chem.
2007,
72:
3713
<A NAME="RG26107ST-8D">8d</A>
Bhagat S.
Chakraborti AK.
J. Org. Chem.
2007,
72:
1263
<A NAME="RG26107ST-9">9</A>
Bartoli G.
Locatelli M.
Melchiorre P.
Sambri L.
Eur. J. Org. Chem.
2007,
2037 ; and references therein cited
<A NAME="RG26107ST-10A">10a</A>
Long J.
Chem. Health Safety
2002,
9:
12
<A NAME="RG26107ST-10B">10b</A>
El-Awad AM.
Gabr RM.
Girgis MM.
Thermochim. Acta
1991,
184:
205
<A NAME="RG26107ST-11">11</A>
Bartoli G.
Bosco M.
Locatelli M.
Marcantoni E.
Melchiorre P.
Sambri L.
Synlett
2004,
239
<A NAME="RG26107ST-12A">12a</A>
Bartoli G.
Bosco M.
Locatelli M.
Marcantoni E.
Massaccesi M.
Melchiorre P.
Sambri L.
Synlett
2004,
1794
<A NAME="RG26107ST-12B">12b</A>
Bartoli G.
Bosco M.
Locatelli M.
Marcantoni E.
Melchiorre P.
Sambri L.
Org. Lett.
2005,
7:
427
<A NAME="RG26107ST-12C">12c</A>
Bartoli G.
Bosco M.
Dalpozzo R.
Marcantoni E.
Massaccesi M.
Rinaldi S.
Sambri L.
Synlett
2003,
39
<A NAME="RG26107ST-12D">12d</A>
Bartoli G.
Bosco M.
Carlone A.
Locatelli M.
Marcantoni E.
Melchiorre P.
Palazzi P.
Sambri L.
Eur. J. Org. Chem.
2006,
4429
<A NAME="RG26107ST-12E">12e</A>
Khatik GL.
Kumar R.
Chakraborti AK.
Synthesis
2007,
541
<A NAME="RG26107ST-12F">12f</A>
Shivani RG.
Chakraborti AK.
J. Mol. Catal. A: Chem.
2007,
264:
208
<A NAME="RG26107ST-13">13</A>
General Procedure for the Synthesis of Dihydropyridine 3 from Enamino Derivatives
1: In a two-necked flask equipped with a magnetic stirring bar, Mg(ClO4)2 (0.10 mmol), MgSO4 (0.20 mmol), and the enamino derivative 1 (1.0 mmol) were suspended in anhyd CH2Cl2 (2 mL) and the aldehyde 2 (1.2 mmol) was added. The mixture was stirred at r.t. until completion of the reaction
or for 70 h. The crude reaction mixture was filtered on celite and the solvent was
removed by rotary evaporation. The dihydropyridine 3 was purified by flash chromatography on silica gel pretreated with the solvent mixture
of PE-acetone (95:5) added with 5% Et3N.
General Procedure for the Synthesis of Dihydropyridine 3 from Carbonyl Derivatives
5: In a two-necked flask equipped with a magnetic stirring bar, Mg(ClO4)2 (0.10 mmol), MgSO4 (0.20 mmol), and the carbonyl derivative 5 (1.0 mmol) were suspended in anhyd CH2Cl2 (2 mL) and the amine (1.1 mmol) was added. When the reaction was completed (check
with TLC), the aldehyde 2 (1.2 mmol) was added. The mixture was stirred at r.t until completion of the reaction
or for 70 h. The crude reaction mixture was filtered on celite and the solvent was
removed by rotary evaporation. The dihydropyridine 3 was purified by flash chromatography on silica gel pre-treated with the solvent mixture
of PE-acetone (95:5) added with 5% Et3N.
Spectroscopic data for selected compounds are as follows:
1-(4-Isopropyl-2-methyl-1-phenyl-1,4-dihydropyridin-3-yl)ethanone (3ba): 1H NMR: δ = 0.91 (d, J
H,H = 6.9 Hz, 6 H), 1.50-1.60 (m, 1 H), 2.00 (s, 3 H), 2.27 (s, 3 H), 3.41 (dd, J
H,H = 4.4, 6.0 Hz, 1 H), 4.93 (dd, J
H,H = 6.2, 7.5 Hz, 1 H), 6.30 (d, J
H,H = 7.5 Hz, 1 H), 7.05-7.15 (m, 2 H), 7.25-7.30 (m, 1 H), 7.35-7.45 (m, 2 H). 13C NMR: δ = 16.8 (Me), 18.6 (Me), 19.1 (Me), 29.0 (Me), 35.5 (CH), 40.6 (CH), 103.5
(CH), 111.1 (C), 126.96 (CH), 126.99 (CH), 129.3 (CH), 131.3 (CH), 143.6 (C), 146.4
(C), 200.9 (C). HRMS: m/z calcd for C17H21NO: 255.1623; found: 255.1623.
1-[2-Methyl-4-(2-nitrophenyl)-1-phenyl-1,4-dihydro-pyridin-3-yl]ethanone (3bd): 1H NMR: δ = 1.99 (s, 3 H), 2.18 (s, 3 H), 5.26 (dd, J
H,H = 5.5, 7.5 Hz, 1 H), 5.32 (d, J
H,H = 5.5 Hz, 1 H), 6.10 (d, J
H,H = 7.5 Hz, 1 H), 7.15-7.20 (m, 2 H), 7.35-7.40 (m, 2 H), 7.40-7.45 (m, 2 H), 7.60-7.65
(m, 2 H), 7.80-7.85 (m, 1 H). 13C NMR: δ = 19.6 (Me), 29.8 (Me), 37.3 (CH), 106.4 (CH), 108.9 (C), 124.3 (CH), 127.4
(CH), 127.8 (CH), 128.1 (CH), 130.0 (CH), 130.3 (CH), 131.1 (CH), 134.0 (CH), 141.7
(C), 143.3 (C), 147.7 (C), 149.2 (C), 199.0 (C). HRMS: m/z calcd for C20H18N2O3: 334.1317; found: 334.1315.
tert
-Butyl 1-Butyl-2-methyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3-carboxylate (3cd): 1H NMR: δ = 0.95 (t, J
H,H = 7.3 Hz, 3 H), 1.10 (s, 9 H), 1.35-1.40 (m, 2 H), 1.55-1.60 (m, 2 H), 2.49 (s, 3
H), 3.20-3.30 (m, 1 H), 3.40-3.50 (m, 1 H), 5.04 (d, J
H,H = 4.9 Hz, 1 H), 5.15 (dd, J
H,H = 4.9, 7.7 Hz, 1 H), 5.82 (d, J
H,H = 7.7 Hz, 1 H), 7.10-7.15 (m, 1 H), 7.55-7.60 (m, 2 H), 7.80-7.85 (m, 1 H). 13C NMR: δ = 13.8 (Me), 15.3 (Me), 19.8 (CH2), 27.8 (3 × Me), 32.4 (CH2), 37.3 (CH), 50.1 (CH2), 78.9 (C), 99.7 (C), 106.2 (CH), 123.4 (CH), 126.2 (CH), 129.3 (CH), 130.9 (CH),
133.2 (CH), 144.2 (C), 147.4 (C), 149.6 (C), 167.8 (C). HRMS: m/z calcd for C21H28N2O4: 372.2049; found: 372.2048.
Ethyl 1-Butyl-2-methyl-4-propyl-1,4-dihydropyridine-3-carboxylate (3fc): 1H NMR: δ = 0.87 (t, J
H,H = 6.8 Hz, 3 H), 0.93 (t, J
H,H = 7.3 Hz, 3 H), 1.26 (t, J
H,H = 7.1 Hz, 3 H), 1.20-1.40 (m, 6 H), 1.45-1.55 (m, 2 H), 2.36 (s, 3 H), 3.10-3.20
(m, 1 H), 3.30-3.40 (m, 1 H), 3.40-3.50 (m, 1 H), 4.05-4.20 (m, 2 H), 4.86 (dd, J
H,H = 6.3, 7.4 Hz, 1 H), 5.84 (d, J
H,H = 7.4 Hz, 1 H). 13C NMR: δ = 14.0 (Me), 14.5 (Me), 14.6 (Me), 15.8 (Me), 18.2 (CH2), 20.0 (CH2), 32.6 (CH2), 33.0 (CH), 41.6 (CH2), 50.0 (CH2), 59.2 (CH2), 99.7 (C), 107.5 (CH), 130.0 (CH), 149.3 (C), 169.7 (C). HRMS: m/z calcd for C16H27NO2: 265.2042; found: 265.2043.
1,4-Diphenyl-3-(ethoxycarbonyl)-2-methylpyridinium Perchlorate (4db): 1H NMR (CD2Cl2): δ = 1.06 (t, J
H,H = 7.2 Hz, 3 H), 2.60 (s, 3 H), 4.25 (q, J
H,H = 7.2 Hz, 2 H), 7.60-7.70 (m, 7 H), 7.75-7.80 (m, 3 H), 8.11 (d, J
H,H = 6.6 Hz, 1 H), 8.78 (d, J
H,H = 6.6 Hz, 1 H). 13C NMR (CD2Cl2): δ = 13.6 (Me), 19.9 (Me), 63.8 (CH2), 125.7 (CH), 127.1 (CH), 128.5 (CH), 129.7 (CH), 131.3 (CH), 131.7 (CH), 132.3 (CH),
134.0 (C), 135.3 (C), 140.8 (C), 146.3 (CH), 153.6 (C), 158.3 (C), 164.6 (C).
MS (ESI+): m/z = 318. MS (ESI-): m/z = 99.
1-Benzyl-3-(ethoxycarbonyl)-2-methyl-4-isopropyl-pyridinium Perchlorate (4ea): 1H NMR: δ = 1.33 (t, J
H,H = 7.1 Hz, 6 H), 1.40 (t, J
H,H = 7.0 Hz, 3 H), 2.72 (s, 3 H), 3.00-3.10 (m, 1 H), 4.48 (q, J
H,H = 7.1 Hz, 2 H), 5.83 (s, 2 H), 7.25-7.30 (m, 2 H), 7.35-7.45 (m, 3 H), 7.93 (d, J
H,H = 7.0 Hz, 1 H), 8.92 (d, J
H,H = 7.0 Hz, 1 H). 13C NMR: δ = 13.8 (Me), 18.2 (Me), 22.3 (2 × Me), 47.3 (CH), 61.9 (CH2), 63.4 (CH2), 123.7 (CH), 127.9 (CH), 129.5 (CH), 129.6 (CH), 131.2 (C), 134.7 (C), 146.5 (CH),
151.8 (C), 164.2 (C), 165.4 (C). MS (ESI+): m/z = 298. MS (ESI-): m/z = 99.
<A NAME="RG26107ST-14">14</A>
We compared our results with those from the previously reported procedure, employing
Sc(OTf)3 as Lewis acid (see ref. 6b) and we found conversion yields similar to those obtained
with our method facing the same separation problems. These results mean that the perchlorate
anion is not responsible in any way for the low recovered yields.