References and Notes
<A NAME="RU09707ST-1">1</A> For a review of the earlier work on haplophytine, see:
Saxton JE.
Alkaloids
1965,
8:
673
<A NAME="RU09707ST-2A">2a</A>
Rogers EF.
Snyder HR.
Fischer RF.
J. Am. Chem. Soc.
1952,
74:
1987
<A NAME="RU09707ST-2B">2b</A>
Snyder HR.
Fischer RF.
Walker JF.
Els HE.
Nussberger GA.
J. Am. Chem. Soc.
1954,
76:
2819
<A NAME="RU09707ST-2C">2c</A>
Snyder HR.
Fischer RF.
Walker JF.
Els HE.
Nussberger GA.
J. Am. Chem. Soc.
1954,
76:
4601
<A NAME="RU09707ST-2D">2d</A>
Synder HR.
Strohmayer HF.
Mooney RA.
J. Am. Chem. Soc.
1958,
80:
3708
<A NAME="RU09707ST-3">3</A>
Yates P.
MacLachlan FN.
Rae ID.
Rosenberger M.
Szabo AG.
Willis CR.
Cava MP.
Behforouz M.
Lakshmikantham MV.
Zeigler W.
J. Am. Chem. Soc.
1973,
95:
7842
<A NAME="RU09707ST-4">4</A>
Cheng P.-T.
Nyburg SC.
MacLachlan FN.
Yates P.
Can. J. Chem.
1976,
54:
726
<A NAME="RU09707ST-5A">5a</A>
Cava MP.
Talapatra SK.
Nomura K.
Weisbach JA.
Douglas B.
Shoop EC.
Chem. Ind. (London)
1963,
1242
<A NAME="RU09707ST-5B">5b</A>
Cava MP.
Talapatra SK.
Yates P.
Rosenberger M.
Szabo AG.
Douglas B.
Raffauf RF.
Shoop EC.
Weisbach JA.
Chem. Ind. (London)
1963,
1875
<A NAME="RU09707ST-5C">5c</A>
Rae ID.
Rosenberger M.
Szabo AG.
Willis CR.
Yates P.
Zacharias DE.
Jeffrey GA.
Douglas B.
Kirkpatrick JL.
Weisbach JA.
J. Am. Chem. Soc.
1967,
89:
3061
For synthetic studies, see:
<A NAME="RU09707ST-6A">6a</A>
Yates P.
Schwartz DA.
Can. J. Chem.
1983,
61:
509
<A NAME="RU09707ST-6B">6b</A>
Schwartz DA.
Yates P.
Can. J. Chem.
1983,
61:
1126
<A NAME="RU09707ST-6C">6c</A>
Rege PD.
Tian Y.
Corey EJ.
Org. Lett.
2006,
8:
3117
<A NAME="RU09707ST-7">7</A> For a similar approach of this work, see:
Nicolaou KC.
Majumder U.
Roche SP.
Chen DYK.
Angew. Chem. Int. Ed.
2007,
46:
4715
<A NAME="RU09707ST-8">8</A>
He F.
Bo Y.
Altom JD.
Corey EJ.
J. Am. Chem. Soc.
1999,
121:
6771
<A NAME="RU09707ST-9A">9a</A>
Sumi S.
Matsumoto K.
Tokuyama H.
Fukuyama T.
Org. Lett.
2003,
5:
1891
<A NAME="RU09707ST-9B">9b</A>
Sumi S.
Matsumoto K.
Tokuyama H.
Fukuyama T.
Tetrahedron
2003,
59:
8571
<A NAME="RU09707ST-10">10</A>
Mejia-Oneto JM.
Padwa A.
Org. Lett.
2006,
8:
3275
<A NAME="RU09707ST-11">11</A>
Marino JP.
Cao GF.
Tetrahedron Lett.
2006,
47:
7711
<A NAME="RU09707ST-12A">12a</A>
Matsumoto K.
PhD Dissertation
University of Tokyo;
Japan:
2006.
<A NAME="RU09707ST-12B">12b</A>
The preliminary results of this work were communicated in the Pharmaceutical Society
of Japan, the 33th Symposium on Progress in Organic Reaction and Syntheses - Applications
in the Life Science on November 7-8, 2005 (Book of Abstracts, ISSN 0919-2123). The
approach described in this paper and a similar approach reported by K. C. Nicolaou
and co-workers (ref. 7) were developed independently.
<A NAME="RU09707ST-13">13</A>
Yates P.
MacLachlan FN.
Rae ID.
Rosenberger M.
Szabo AG.
Willis CR.
Cava MP.
Behforouz M.
Lakshmikantham MV.
Zeigler W.
J. Am. Chem. Soc.
1973,
95:
7842
<A NAME="RU09707ST-14">14</A>
Shimizu M.
Ishikawa M.
Komoda Y.
Matsubara Y.
Nakajima T.
Chem. Pharm. Bull.
1982,
30:
4529
<A NAME="RU09707ST-15A">15a</A>
Kan T.
Fukuyama T.
J. Synth. Org. Chem., Jpn.
2001,
59:
779
<A NAME="RU09707ST-15B">15b</A>
Kurosawa W.
Kan T.
Fukuyama T.
Org. Synth.
2002,
79:
186
<A NAME="RU09707ST-15C">15c</A>
Kan T.
Fukuyama T.
Chem. Commun.
2004,
353
<A NAME="RU09707ST-16">16</A>
Major product 17: mp 220-222 °C (dec.); IR (film): 3419, 3332, 2937, 1732, 1666, 1610, 1516, 1481,
1400, 912, 758 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.28 (d, J = 8.4 Hz, 1 H), 7.20 (t, J = 8.4 Hz, 1 H), 7.14 (d, J = 8.4 Hz, 1 H), 6.98 (t, J = 8.4 Hz, 1 H), 6.87 (d, J = 7.6 Hz, 1 H), 6.38 (d, J = 8.0 Hz, 1 H), 3.59 (s, 3 H), 3.18-3.04 (m, 3 H), 2.84 (s, 6 H), 2.82-2.77 (m, 1
H), 2.69-2.60 (m, 2 H), 2.52-2.44 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 204.8, 169.1, 149.3, 143.0, 141.9, 139.9, 135.2, 127.9, 125.7, 124.4, 123.8,
121.3, 115.7, 104.7, 93.5, 64.0, 59.1, 58.4, 45.6, 42.1, 33.7, 31.3, 30.2. HRMS-FAB:
m/z calcd for C23H25N3O4 [M + H]+: 408.1923; found: 408.1918.
<A NAME="RU09707ST-17">17</A>
Compound 25: IR (film): 2944, 1706, 1681, 1601, 1390, 1336, 1158, 912, 756 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.20 (d, J = 7.2 Hz, 1 H), 7.35-7.24 (m, 13 H), 7.08 (d, J = 8.4 Hz, 1 H), 7.03 (t, J = 8.4 Hz, 1 H), 5.11 (br s, 4 H), 3.65-3.55 (m, 2 H), 3.62 (br s, 3 H), 3.59 (br
s, 3 H), 3.44-3.35 (m, 1 H), 3.27-3.20 (m, 1 H), 3.20 (s, 3 H), 2.99 (dt, J = 7.2, 15.6 Hz, 1 H), 2.76 (dd, J = 3.6, 15.6 Hz, 1 H), 2.46 (dt, J = 5.2, 15.6 Hz, 1 H), 1.82 (dt, J = 7.2, 14.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 166.2, 155.9, 152.6, 150.2, 140.2, 137.1, 136.9, 136.4, 135.9, 133.2, 128.8,
128.7, 128.6, 128.5, 128.1, 124.6, 124.5, 123.2, 122.0, 115.9, 67.7, 67.4, 60.5, 60.1,
49.3, 41.9, 37.9, 33.4, 21.3, 14.5. HRMS-FAB: m/z calcd for C39H37N3O7: 659.2632; found: 659.2630.
<A NAME="RU09707ST-18">18</A>
Oxidative Rearrangement
To a solution of 25 (100 mg, 0.152 mmol) in CH2Cl2 (1.5 mL) was added NaHCO3 (38.2 mg, 0.455 mmol) and MCPBA (40.2 mg, 65% purity, 0.152 mmol) at 0 °C under an
argon atmosphere. After stirring for 2 h at the same temperature, the reaction mixture
was quenched with sat. Na2SO3 and stirred for 10 min. Then to the two-phase mixture was added CH2Cl2, and the organic layer was separated. The organic layer was washed with sat. NaHCO3, brine, and dried over Na2SO4. Filtration and concentration on a rotary evaporator afforded a crude product. The
crude product was purified by flash column chromatography on silica gel (neutral;
30-40% EtOAc in hexane, gradient elution) to give 26 (84.1 mg, 82%). IR (film): 2944, 1709, 1458, 1394, 1316, 1159, 912, 756 cm-1. 1H NMR (400 MHz, CDCl3, mixture of rotamers): δ = 8.29 (d, J = 8.4 Hz, 0.5 H), 8.08 (d, J = 8.0 Hz, 0.5 H), 7.36-6.95 (m, 14 H), 6.80 (dd, J = 7.2, 11.2 Hz, 1 H), 5.15 (br s, 2 H), 5.12 (s, 2 H), 3.83-3.76 (m, 0.5 H), 3.68-3.52
(m, 1.5 H), 3.68 (br s, 1.5 H), 3.61 (br s, 1.5 H), 3.41-3.29 (m, 1 H), 3.25 (s, 3
H), 2.99 (br s, 1 H), 2.88-2.76 (m, 1 H), 2.80 (br s, 3 H), 2.66-2.43 (m, 1.5 H),
2.25-2.05 (m, 1 H), 1.95-1.86 (m, 0.5 H). 13C NMR (100 MHz, CDCl3, doubling due to rotamers): δ = 195.2, 171.9, 168.0, 155.4, 154.6, 149.4, 149.2,
140.2, 136.3, 136.2, 135.3, 135.1, 134.8, 132.8, 130.5, 128.4, 128.3, 128.0, 127.8,
127.2, 125.3, 123.9, 122.9, 122.2, 121.8, 120.8, 120.5, 120.2, 115.7, 81.4, 67.7,
67.6, 66.9, 59.9, 58.1, 56.4, 52.3, 46.1, 40.4, 39.3, 37.4, 36.1, 30.6, 30.3, 30.1,
21.0. HRMS-FAB: m/z calcd for C39H37N3O8: 675.2581; found: 675.2578.