Synlett 2007(17): 2728-2732  
DOI: 10.1055/s-2007-991053
LETTER
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted, Palladium-Catalyzed Intramolecular Direct Arylation for the Synthesis of Novel Fused Heterocycles

Jinlong Wua, Liang Niea, Jialu Luoa, Wei-Min Dai*a,b
a Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
Fax: +86(571)87953128; e-Mail: [email protected];
b Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. of China
Fax: +85223581594; e-Mail: [email protected];
Further Information

Publication History

Received 20 July 2007
Publication Date:
25 September 2007 (online)

Abstract

An efficient synthesis of novel fused heterocycles has been established via microwave-assisted palladium-catalyzed intramolecular direct arylation. The acyclic aryl bromides are readily available from microwave-assisted one-pot annulation of N-(2-bromobenzyl)-2-aminophenols and ethyl 2-bromoalkanoates. The intramolecular direct arylation is then performed in the presence of palladium(II) acetate and dppf (10 mol% each) in toluene using potassium carbonate (2 equiv) as the base under microwave heating (150 °C, 1 h) to afford the products in 43-99% yields. Steric effect is observed for Ar-Ar bond formation, giving a substantial amount of the debromination byproduct.

    References and Notes

  • 1a Hoshino O. In The Alkaloids   Vol. 51:  Cordell GA. Academic Press; San Diego: 1998.  p.323 
  • 1b Lewis JR. Nat. Prod. Rep.  2000,  17:  57 
  • 1c Lewis JR. Nat. Prod. Rep.  1998,  15:  107 
  • 2a Ríos JL. Máñez S. Giner RM. Recio MC. In The Alkaloids   Vol. 53:  Cordell GA. Academic Press; New York: 2000.  p.57 
  • 2b Guinaudeau H. Leboeaf M. Cavé A. J. Nat. Prod.  1994,  57:  1033 ; and references cited therein
  • For selected reviews, see:
  • 3a Alberico D. Scott ME. Lautens M. Chem. Rev.  2007,  107:  174 
  • 3b Campeau L.-C. Fagnou K. Chem. Commun.  2006,  1253 
  • 3c Echavarren AM. Gómez-Lor B. González JJ. de Frutos Ó. Synlett  2003,  585 
  • 4a Harayama T. Hori A. Abe H. Takeuchi Y. Tetrahedron  2004,  60:  1611 
  • 4b Torres JC. Pinto AC. Garden SJ. Tetrahedron  2004,  60:  9889 
  • 5 Echavarren AM. Gómez-Lor B. Org. Lett.  2004,  6:  2993 
  • 6a Cuny GD. Tetrahedron Lett.  2003,  44:  8149 
  • 6b Cuny GD. Tetrahedron Lett.  2004,  45:  5167 
  • 7a Lafrance M. Blaquière N. Fagnou K. Chem. Commun.  2004,  2874 
  • 7b For synthesis of 9-arylphenanthrenes, see: García-Cuadrado D. de Mendoza P. Braga AAC. Maseras F. Echavarren AM. J. Am. Chem. Soc.  2007,  129:  6880 
  • 8a Cuny G. Bois-Choussy M. Zhu J. Angew. Chem. Int. Ed.  2003,  42:  4774 
  • 8b Cuny G. Bois-Choussy M. Zhu J. J. Am. Chem. Soc.  2004,  126:  14475 
  • For examples of microwave-assisted C-H activation using rhodium catalyst, see:
  • 9a Tan KL. Vasudevan A. Bergman RG. Ellman JA. Souers AJ. Org. Lett.  2003,  5:  2131 
  • 9b Lewis JC. Wu JY. Bergman RG. Ellman JA. Angew. Chem. Int. Ed.  2006,  45:  1589 
  • 9c Using palladium catalyst, see: Sridharan V. Martín MA. Menendez JC. Synlett  2006,  2375 
  • 9d Using nickel catalyst, see: Cioffi EA. Bell RH. Le B. Tetrahedron: Asymmetry  2005,  16:  471 
  • Also, see:
  • 9e Larhed M. Moberg C. Hallberg A. Acc. Chem. Res.  2002,  35:  717 
  • 9f Roberts BA. Strauss CR. Acc. Chem. Res.  2005,  38:  653 
  • For selected reviews on controlled microwave heating, see:
  • 10a Nüchter M. Ondruschka B. Bonrath W. Gum A. Green Chem.  2004,  43:  128 
  • 10b Kappe CO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • For recent monographs, see:
  • 10c Kappe CO. Stadler A. Microwaves in Organic and Medicinal Chemistry   Wiley-VCH; Weinheim: 2005. 
  • 10d Microwaves in Organic Synthesis   Vol. 1 and 2:  Loupy A. Wiley-VCH; Weinheim: 2006. 
  • For synthesis of indoles, see:
  • 11a Dai W.-M. Guo D.-S. Sun L.-P. Tetrahedron Lett.  2001,  42:  5275 
  • 11b Dai W.-M. Sun L.-P. Guo D.-S. Tetrahedron Lett.  2002,  43:  7699 
  • 11c Dai W.-M. Guo D.-S. Sun L.-P. Huang X.-H. Org. Lett.  2003,  5:  2919 
  • 11d Sun L.-P. Huang X.-H. Dai W.-M. Tetrahedron  2004,  60:  10983 
  • 11e Sun L.-P. Dai W.-M. Angew. Chem. Int. Ed.  2006,  45:  7255 
  • 12 For synthesis of benzo[b]furanes, see: Dai W.-M. Lai KW. Tetrahedron Lett.  2002,  43:  9677 
  • For synthesis of 1,4-benzoxazines, see:
  • 13a Dai W.-M. Wang X. Ma C. Tetrahedron  2005,  61:  6879 
  • 13b Feng G. Wu J. Dai W.-M. Tetrahedron  2006,  62:  4635 
  • 13c Xing X. Wu J. Feng G. Dai W.-M. Tetrahedron  2006,  62:  6774 
  • 13d Feng G. Wu J. Dai W.-M. Tetrahedron Lett.  2007,  48:  401 
  • 14 For synthesis of tetrahydroquinolines, see: Xing X. Wu J. Dai W.-M. Tetrahedron  2006,  62:  11200 
  • 15 For synthesis of the conjugates of dibenz[b,f][1,4]oxazepine with 2-oxindole, see: Xing X. Wu J. Luo J. Dai W.-M. Synlett  2006,  2099 
  • 16 Abdel-Magid AF. Carson KG. Harris BD. Maryanoff CA. Shah RD. J. Org. Chem.  1996,  61:  3849 
  • 18a Dai W.-M. Li Y. Zhang Y. Lai KW. Wu J. Tetrahedron Lett.  2004,  45:  1999 
  • 18b Dai W.-M. Zhang Y. Tetrahedron Lett.  2005,  46:  1377 
  • 18c Jin J. Chen Y. Li Y. Wu J. Dai W.-M. Org. Lett.  2007,  9:  2585 
17

General Procedure for Pd-Catalyzed Direct Arylation: A 10 mL pressurized process vial was charged with the bromide 8 (0.50 mmol), Pd(OAc)2 (0.05 mmol), dppf (0.05 mmol), and K2CO3 (1.00 mmol) and it was sealed with a cap containing a silicon septum. The vial was then evacuated and backfilled with N2 (repeated for several times) through the cap using a needle. To the degassed vial was added degassed anhyd toluene (3 mL) through the cap using a syringe. The loaded vial was then placed into the microwave reactor cavity and was heated at 150 °C for 1 h. After cooled to r.t. H2O (5 mL) was added to the reaction vial. The resultant mixture was then extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with brine, dried over anhyd Na2SO4, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel to furnish the product (see Table [3] and Scheme [4] for details). Spectroscopic data for 7e: IR (KBr): 1672, 1236 cm-1. 1H NMR (400 MHz, CDCl3): d = 8.49 (d, J = 7.6 Hz, 1 H), 7.43-7.32 (m, 3 H), 7.16 (d, J = 8.4 Hz, 1 H), 6.89 (d, J = 8.8 Hz, 1 H), 5.13 and 4.61 (ABq, J = 14.8 Hz, 2 H), 4.54 (q, J = 6.8 Hz, 1 H), 1.57 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): d = 164.6, 143.9, 132.2, 129.0, 128.5, 127.6, 127.5, 127.2, 126.8, 126.6, 124.4, 122.8, 116.2, 73.4, 42.6, 15.5. MS (ESI+): m/z (%) = 308 (100) [M + Na+]. Anal. Calcd for C16H12ClNO2: C, 67.26; H, 4.23; N, 4.90. Found: C, 67.28; H, 4.22; N, 4.88. The 1H NMR and 13C NMR of 7a-f and 16 can be obtained from the authors upon request.