References and Notes
<A NAME="RG26307ST-1A">1a</A>
Wellington KW.
Benner SA.
Nucleosides, Nucleotides Nucleic Acids
2006,
25:
1309
<A NAME="RG26307ST-1B">1b</A>
Wu QP.
Simons C.
Synthesis
2004,
1533
<A NAME="RG26307ST-1C">1c</A>
Henry AA.
Romesberg FE.
Curr. Opin. Chem. Biol.
2003,
7:
727
<A NAME="RG26307ST-1D">1d</A>
Kool ET.
Acc. Chem. Res.
2002,
35:
936
<A NAME="RG26307ST-1E">1e</A>
Kool ET.
Morales JC.
Guckian KM.
Angew. Chem. Int. Ed.
2000,
39:
990
For a review, see:
<A NAME="RG26307ST-2A">2a</A>
Ramesh NG.
Balasubramanian KK.
Eur. J. Org. Chem.
2003,
4477
For recent references, see:
<A NAME="RG26307ST-2B">2b</A>
Bari A.
Feist H.
Michalik M.
Peseke K.
Molecules
2005,
10:
837
<A NAME="RG26307ST-2C">2c</A>
Otero I.
Methling K.
Feist H.
Michalik M.
Quincoces J.
Reinke H.
Peseke K.
J. Carbohydr. Chem.
2005,
24:
809
<A NAME="RG26307ST-2D">2d</A>
Bari A.
Milicevic S.
Feist H.
Michalik D.
Michalik M.
Peseke K.
Synthesis
2005,
2758
<A NAME="RG26307ST-2E">2e</A>
Nasr AZ.
Nucleosides, Nucleotides Nucleic Acids
2004,
23:
1825 ; and references cited therein
<A NAME="RG26307ST-3">3</A>
Alonso-Cruz CR.
Kennedy AR.
Rodríguez MS.
Suárez E.
Org. Lett.
2003,
5:
3729
For syntheses of related 1,4-anhydro-1-(1H-pyrrol-2-yl)alditol derivatives, see:
<A NAME="RG26307ST-4A">4a</A>
Armitt DJ.
Banwell MG.
Freeman C.
Parish CR.
J. Chem. Soc., Perkin Trans. 1
2002,
1743
<A NAME="RG26307ST-4B">4b</A>
Nishimura N.
Kato A.
Maeba I.
Carbohydr. Res.
2001,
331:
77
<A NAME="RG26307ST-4C">4c</A>
Yokoyama M.
Nomura M.
Togo H.
Seki H.
J. Chem. Soc., Perkin Trans. 1
1996,
2145
<A NAME="RG26307ST-4D">4d</A>
Yokoyama M.
Akiba T.
Togo H.
Synthesis
1995,
638
<A NAME="RG26307ST-4E">4e</A>
Patil SA.
Otter BA.
Klein RS.
Tetrahedron Lett.
1994,
35:
5339
<A NAME="RG26307ST-4F">4f</A>
Casiraghi G.
Cornia M.
Rassu G.
Delsante C.
Spanu P.
Tetrahedron
1992,
48:
5619
<A NAME="RG26307ST-4G">4g</A>
Maeba I.
Takeuchi T.
Iijima T.
Kitaori K.
Muramatsu H.
J. Chem. Soc., Perkin Trans. 1
1989,
649
<A NAME="RG26307ST-4H">4h</A>
Maeba I.
Takeuchi T.
Iijima T.
Furukawa H.
J. Org. Chem.
1988,
53:
1401
<A NAME="RG26307ST-4I">4i</A>
Perez JAG.
Caballero RB.
Ventula AC.
Carbohydr. Res.
1985,
143:
129
For a specific review on azirines in reactions involving pyrroles, see:
<A NAME="RG26307ST-5A">5a</A>
Trofimov BA.
Mikhaleva AI.
Chem. Heterocycl. Compd. (Engl. Transl.)
1987,
23:
1037
For general reviews of azirines, see:
<A NAME="RG26307ST-5B">5b</A>
Palacios F.
Ochoa de Retana AM.
Martínez de Marigorta E.
de los Santos JM.
Org. Prep. Proced. Int.
2002,
34:
219
<A NAME="RG26307ST-5C">5c</A>
Palacios F.
Ochoa de Retana AM.
Martínez de Marigorta E.
de los Santos JM.
Eur. J. Org. Chem.
2001,
2401
<A NAME="RG26307ST-5D">5d</A>
Gilchrist TL.
Aldrichimica Acta
2001,
34:
51
<A NAME="RG26307ST-5E">5e</A>
Zwanenburg B.
ten Holte P.
Top. Curr. Chem.
2001,
216:
93
<A NAME="RG26307ST-5F">5f</A>
Padwa A.
Woolhouse AD.
Comprehensive Heterocyclic Chemistry
Vol. 7:
Katritzky AR.
Rees CW.
Pergamon Press;
Oxford:
1984.
p.47-93
<A NAME="RG26307ST-5G">5g</A>
Anderson DJ.
Hassner A.
Synthesis
1975,
483
For recent examples of the addition of nucleophiles to azirines, see:
<A NAME="RG26307ST-5H">5h</A>
Hassner A.
Usak D.
Kumareswaran R.
Friedman O.
Eur. J. Org. Chem.
2004,
2421
<A NAME="RG26307ST-5I">5i</A>
Pinho e Melo TMVD.
Lopes CSJ.
Rocha Gonsalves AM.
Beja AM.
Paixao JA.
Silva MR.
da Veiga LA.
J. Org. Chem.
2002,
67:
66
<A NAME="RG26307ST-6">6</A>
Filho PF.
Schuchardt U.
Angew. Chem., Int. Ed. Engl.
1977,
16:
647
<A NAME="RG26307ST-7">7</A>
Narasimhan NS.
Heimgartner H.
Hansen H.-J.
Schmid H.
Helv. Chim. Acta
1973,
56:
1351
<A NAME="RG26307ST-8">8</A>
Alves MJ.
Gilchrist TL.
Sousa JH.
J. Chem. Soc., Perkin Trans. 1
1999,
1305
<A NAME="RG26307ST-9">9</A>
Tchissambou L.
Benechie M.
Khuong-Huu F.
Tetrahedron
1982,
38:
2687
For a review on vanadium in organic synthesis, see:
<A NAME="RG26307ST-10A">10a</A>
Hirao T.
Chem. Rev.
1997,
97:
2707
For nucleophilic addition catalysed by vanadium, see:
<A NAME="RG26307ST-10B">10b</A>
Belokon YN.
Green B.
Ikonnikov NS.
North M.
Parsons T.
Tararov VI.
Tetrahedron
2001,
57:
771
<A NAME="RG26307ST-10C">10c</A>
Trost BM.
Jonasson C.
Wuchrer M.
J. Am. Chem. Soc.
2001,
123:
12736
<A NAME="RG26307ST-10D">10d</A>
Trost BM.
Oi S.
J. Am. Chem. Soc.
2001,
123:
1230
For the synthesis of VO(OSiPh3)3, see:
<A NAME="RG26307ST-11A">11a</A>
Pauling H.
Andrews DA.
Hindley NC.
Helv. Chim. Acta
1976,
59:
1233
<A NAME="RG26307ST-11B">11b</A>
Trost BM.
Jonasson C.
Angew. Chem. Int. Ed.
2003,
42:
2063
<A NAME="RG26307ST-12A">12a</A>
The catalytic activity of VO(OSiPh3)3 is more apparent with hindered 1,3-diketones; for example, in the absence of catalyst
the reaction of 5α-cholestan-1,3-dione (see ref. 12b) with an excess of azirine 2 did not occur after 48 h in anhydrous CH2Cl2 at reflux temperature; notwithstanding, in the presence of 5 mol% of VO(OSiPh3)3 the reaction proceeded to completion in only 5 h to give a 6:4 mixture of regioisomers
A and B in 96% yield (Scheme
[3]
).
<A NAME="RG26307ST-12B">12b</A>
Win WW.
Franck RW.
J. Org. Chem.
1997,
62:
4510
For synthesis of 3-pyrrole acyclic C-nucleosides by other methods, see:
<A NAME="RG26307ST-13A">13a</A>
Yu M.
Brian L.
Pagenkopf BL.
Org. Lett.
2003,
5:
5099
<A NAME="RG26307ST-13B">13b</A>
Chiara J.-L.
Gómez-Sánchez A.
Hidalgo F.-J.
Yruela I.
Carbohydr. Res.
1989,
188:
55
<A NAME="RG26307ST-13C">13c</A>
Gómez-Sánchez A.
Hidalgo F.-J.
Chiara J.-L.
Carbohydr. Res.
1987,
167:
55
<A NAME="RG26307ST-13D">13d</A>
González FG.
Sánchez AG.
Gómez JG.
An. R. Soc. Esp. Fís. Quím., Ser. B
1958,
54:
513
<A NAME="RG26307ST-13E">13e</A>
González FG.
Sánchez AG.
Gómez JG.
An. R. Soc. Esp. Fís. Quím., Ser. B
1958,
54:
519
<A NAME="RG26307ST-13F">13f</A>
Sánchez AG.
Gómez JG.
An. R. Soc. Esp. Fís. Quím., Ser. B
1958,
54:
753
<A NAME="RG26307ST-14A">14a</A>
Veronese AC.
Morelli CF.
Tetrahedron Lett.
1998,
39:
3853
<A NAME="RG26307ST-14B">14b</A>
Morelli CF.
Manferdini M.
Veronese AC.
Tetrahedron
1999,
55:
10803
<A NAME="RG26307ST-15A">15a</A>
Dhavale DD.
Bhujbal NN.
Joshi P.
Desai SG.
Carbohydr. Res.
1994,
263:
303
<A NAME="RG26307ST-15B">15b</A>
Karche NP.
Jachak SM.
Dhavale DD.
J. Org. Chem.
2001,
66:
6323
<A NAME="RG26307ST-16A">16a</A>
Tegdes A.
Medgyes G.
Boros S.
Kuszmann J.
Carbohydr. Res.
2006,
341:
776
<A NAME="RG26307ST-16B">16b</A>
van Delft FL.
Valentijn ARPM.
van der Marel GA.
van Boom JH.
J. Carbohydr. Chem.
1999,
18:
165
<A NAME="RG26307ST-17">17</A>
Holmquist CR.
Roskamp EJ.
J. Org. Chem.
1989,
54:
3258
For other synthesis of C-glycoconjugates using C-glycosyl β-keto esters, see:
<A NAME="RG26307ST-18A">18a</A>
Dondoni A.
Massi A.
Sabbatini S.
Bertolasi V.
J. Org. Chem.
2002,
67:
6979
<A NAME="RG26307ST-18B">18b</A>
Saha NN.
Desai VN.
Dhavale DD.
J. Org. Chem.
1999,
64:
1715
<A NAME="RG26307ST-19">19</A>
General Procedure for the Reaction of Azirines with 1,3-Dicarbonyl Compounds Catalyzed
by VO(OSiPh
3
)
3
A solution of the azirine (1 mmol) and 1,3-dicarbonyl (1-1.2 mmol) in an amount of
CH2Cl2 depending on solubility (1-15 mL) containing VO(OSiPh3)3 (0.05 mmol) was stirred under nitrogen, at the temperature and for the time specified
in each case in Table
[1]
and Scheme
[2]
. The reaction mixture was then concentrated under reduced pressure and the residue
purified by silica gel column chromatography (hexanes-EtOAc mixtures).
Compound 6: crystalline solid, mp 161.3-163.3 °C (from n-hexane-EtOAc); [α]D +52 (c 0.073). IR: 3456, 1735, 1646 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.98 (3 H, s), 2.09 (3 H, s), 2.43 (3 H, s), 2.51 (3 H, s), 4.20 (1 H, dd,
J = 12.2, 8.7 Hz), 4.32 (1 H, dd, J = 11.9, 2.7 Hz), 5.58 (1 H, ddd, J = 8.8, 2.6, 2.6 Hz), 6.59 (1 H, d, J = 3.4 Hz), 6.63 (1 H, d, J = 1.9 Hz), 8.15 (1 H, s), 8.96 (1 H, br s). 13C NMR (100.6 MHz, CDCl3): δ = 15.3 (CH3), 20.7 (CH3), 21.0 (CH3), 30.5 (CH3), 62.3 (CH2), 70.0 (CH), 72.2 (CH), 115.9 (CH), 120.1 (C), 120.8 (C), 135.0 (C), 160.3 (CH),
169.7 (C), 170.8 (C), 194.4 (C). MS (EI): m/z (%) = 325 (3) [M+], 279 (5), 265 (5), 236 (19), 152 (100). HRMS: m/z calcd for C15H19NO7: 325.1162; found: 325.1161. Anal. Calcd for C15H19NO7: C, 55.38; H, 5.89; N, 4.31. Found: C, 55.41; H, 5.71; N, 4.12.
Compound 7: crystalline solid, mp 159-161 °C (from n-hexane-CHCl3); [α]D +12.3 (c 0.073). IR 3456, 1735, 1655 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.08 (3 H, s), 1.09 (3 H, s), 1.98 (3 H, s), 2.07 (3 H, s), 2.32 (2 H, br s),
2.64 (2 H, br s), 4.17 (1 H, dd, J = 12.1, 8.0 Hz), 4.31 (1 H, dd, J = 12.2, 2.7 Hz), 5.84 (1 H, ddd, J = 7.3, 3.1, 3.1 Hz), 6.50 (1 H, d, J = 4.2 Hz), 6.73 (1 H, d, J = 2.3 Hz), 8.10 (1 H, s), 9.18 (1H, br s). 13C NMR (100.6 MHz, CDCl3): δ = 20.7 (CH3), 21.0 (CH3), 28.4 (CH3), 28.5 (CH3), 35.7 (C), 36.8 (CH2), 52.4 (CH2), 62.3 (CH2), 68.6 (CH), 72.0 (CH), 116.1 (C), 117.1 (C), 118.0 (CH), 143.4 (C), 160.2 (CH),
169.7 (C), 170.7 (C), 194.0 (C). MS (EI): m/z (%) = 365 (<1) [M+], 304 (14), 276 (29), 220 (38); 192 (100). HRMS: m/z calcd for C18H23NO7: 365.1475; found: 365.1459. Anal. Calcd for C18H23NO7: C, 59.17; H, 6.34; N, 3.83. Found: C, 59.35; H, 6.54; N, 3.51.
Compound 8: crystalline solid, mp 66.4-68.4 °C (from n-hexane-EtOAc); [α]D -13.5 (c 0.07). IR: 3467, 1717, 1655 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.03 (9 H, s), 1.10 (9 H, s), 2.466 (3 H, s), 2.474 (3 H, s), 4.01 (1 H, dd,
J = 10.9, 9.0 Hz), 4.15 (1 H, dd, J = 10.6, 4.0 Hz), 5.14 (1 H, ddd, J = 8.7, 8.7, 4.0 Hz), 5.77 (1 H, d, J = 8.2 Hz), 6.70 (1 H, d, J = 2.7 Hz), 7.86 (1 H, s), 8.90 (1 H, br s). 13C NMR (125.7 MHz, CDCl3): δ = 15.1 (CH3), 20.4 (C), 22.6 (C), 27.1 (3 × CH3), 27.4 (3 × CH3), 30.8 (CH3), 65.1 (CH2), 71.1 (CH), 72.2 (CH), 114.9 (CH), 120.5 (C), 125.7 (C), 135.0 (C), 159.6 (CH),
195.3 (C). MS-FAB: m/z (%) = 382 (12) [M+ + 1], 324 (10). HRMS: m/z calcd for C19H32NO5Si: 382.2050; found: 382.2086. Anal. Calcd for C19H31NO5Si: C, 59.81; H, 8.19; N, 3.67. Found: C, 60.16; H, 8.41; N, 3.32.
Compound 9: oil; [α]D +23 (c 0.09). IR: 3455, 1747, 1640 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.95 (6 H, s), 1.96 (3 H, s), 2.11 (3 H, s), 2.12 (3 H, s), 2.41 (3 H, s),
2.51 (3 H, s), 3.81 (1 H, dd, J = 6.9, 6.9 Hz), 3.97 (1 H, dd, J = 10.9, 6.9 Hz), 4.05 (1 H, dd, J = 10.9, 6.4 Hz), 4.10 (1 H, dd, J = 12.2, 9.0 Hz), 4.28 (1 H, dd, J = 12.2, 2.2 Hz), 4.73 (1 H, d, J = 8.0 Hz), 5.02 (1 H, dd, J = 10.3, 3.5 Hz), 5.22 (1 H, dd, J = 10.3, 8.0 Hz), 5.35 (1 H, dd, J = 3.4, 1.1 Hz), 5.45 (1 H, ddd, J = 9.0, 2.1, 2.1 Hz), 5.54 (1 H, dd, J = 2.9, 1.1 Hz), 6.71 (1 H, dd, J = 2.2, 0.8 Hz), 8.18 (1 H, s), 8.75 (1 H, br s). 13C NMR (100.6 MHz, CDCl3): δ = 15.5 (CH3), 20.48 (CH3), 20.50 (CH3), 20.6 (CH3), 20.7 (CH3), 20.8 (CH3), 30.5, (CH3), 60.9 (CH2), 62.3 (CH2), 67.0 (CH), 69.1 (CH), 70.6 (CH), 70.8 (CH), 74.5 (CH), 77.5 (CH), 101.6, (CH),
116.8 (CH), 119.6 (C), 122.2 (C), 134.8 (C), 160.5 (CH), 169.9 (C), 170.0 (C), 170.2
(C), 170.3 (C), 170.8 (C), 194.3 (C). MS (EI): m/z (%) = 613 (1) [M+], 567 (<1), 508 (<1), 482 (<1), 331 (100), 282 (38). HRMS: m/z calcd for C27H35NO15: 613.2007; found: 613.2023. Anal. Calcd for C27H35NO15: C, 52.85; H, 5.75; N, 2.28. Found: C, 52.86; H, 5.92; N, 2.10.
Compound 11: colourless oil; [α]D +20.2 (c 0.143). IR (neat): 3405, 1729 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.09 (9 H, s), 1.13 (9 H, s), 1.17 (3 H, t, J = 6.8 Hz), 4.00 (1 H, dd, J = 9.7, 9.7 Hz), 4.13 (1 H, dddd, J = 10.7, 7.3, 7.3, 7.3 Hz), 4.15 (1 H, dd, J = 10.6, 4.4 Hz), 4.21 (1 H, dddd, J = 10.7, 7.3, 7.3, 7.3 Hz), 4.70 (1 H, ddd, J = 7.8, 4.4, 2.4 Hz), 4.74 (1 H, dd, J = 12.1, 2.4 Hz), 4.79 (1 H, dd, J = 12.6, 4.8 Hz), 5.02 (1 H, ddd, J = 9.2, 9.2, 4.4 Hz), 5.72 (1 H, dd, J = 7.8, 4.9 Hz), 5.85 (1 H, dd, J = 4.9, 2.4 Hz), 5.87 (1 H, d, J = 8.7 Hz), 5.93 (1 H, d, J = 1.9 Hz), 6.70 (1 H, d, J = 2.4 Hz), 7.28 (2 H, dd, J = 7.8, 7.8 Hz), 7.45 (2 H, dd, J = 7.8, 7.8 Hz), 7.49 (3 H, dd, J = 7.8, 7.8 Hz), 7.60 (2 H, dd, J = 7.3, 7.3 Hz), 7.79 (1 H, s), 7.80 (2 H, m), 8.07 (4 H, m), 9.65 (1 H, br s). 13C NMR (125.7 MHz, CDCl3): δ = 14.3 (CH3), 20.5 (C), 22.7 (C), 27.2 (3 × CH3), 27.5 (3 × CH3), 59.8 (CH2), 63.6 (CH2), 65.5 (CH2), 70.3 (CH), 70.9 (CH), 72.8 (CH), 77.3 (CH), 78.5 (CH), 78.8 (CH), 110.0 (C), 116.2
(CH), 127.5 (C), 128.3 (2 × CH), 128.5 (2 × CH), 128.8 (2 × CH), 129.4 (3 × C), 129.8
(2 × CH), 129.8 (2 × CH), 129.9 (2 × CH), 133.4 (CH), 133.4 (CH), 133.7 (CH), 134.6
(C), 159.5 (CH), 164.5 (C), 165.1 (C), 165.3 (C), 166.9 (C). MS (EI): m/z (%) = 841 (<1) [M+], 784 (26), 738 (6), 719 (8), 662 (6), 418 (22), 105 (100). HRMS: m/z calcd for C45H51NO13Si: 841.3130; found: 841.3135. Anal. Calcd for C45H51NO13Si: C, 64.19; H, 6.11; N, 1.66. Found: C, 64.24; H, 6.16; N, 1.83.
Compound 13: colourless oil; [α]D -55.3 (c 0.19). IR (neat): 3353, 1728 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.07 (3 × 3 H, s), 1.13 (3 × 3 H, s), 1.28 (1 H, t, J = 7.2 Hz), 1.35 (3 H, s), 1.53 (3 H, s), 4.02 (1 H, dd, J = 10.6, 9.3 Hz), 4.06 (1 H, d, J = 11.7 Hz), 4.16-4.27 (4 H, m), 4.29 (1 H, d, J = 2.9 Hz), 4.67 (1 H, d, J = 4.0 Hz), 5.13 (1 H, ddd, J = 9.0, 9.0, 4.8 Hz), 5.81 (1 H, d, J = 2.9 Hz), 5.90 (1 H, d, J = 8.8 Hz), 6.03 (1 H, d, J = 3.7 Hz), 6.91 (1 H, d, J = 2.7 Hz), 6.97 (2 H, m), 7.26 (3 H, m), 7.70 (1 H, s), 8.99 (1 H, br s). 13C NMR (100.4 MHz, CDCl3): δ = 14.4 (CH3), 20.5 (C), 22.67 (C), 26.4 (CH3), 26.94 (CH3), 27.2 (3 × CH3), 27.5 (3 × CH3), 59.7 (CH2), 65.4 (CH2), 70.6 (CH), 72.3 (CH2), 72.8 (CH), 76.8 (CH), 82.2 (CH), 83.6 (CH), 104.5 (CH), 110.1 (C), 112.1 (C), 116.1
(CH), 126.3 (C), 127.6 (2 × CH), 128.0 (CH), 128.4 (2 × CH), 133.0 (C), 137.1 (C),
159.4 (CH), 164.7 (C). MS (EI): m/z (%) = 645 (1) [M+], 630 (2), 588 (44), 496 (11), 91 (100). HRMS: m/z calcd for C33H47NO10Si: 645.2969; found: 645.2985. Anal. Calcd for C33H47NO10Si: C, 61.37; H, 7.34; N, 2.17. Found: C, 61.55; H, 7.40; N, 2.29.
Compound 15: A solution of the crude 14 (17.2 mg, 0.0335 mmol) and VO(OSiPh3)3 (3 mg, 0.003 mmol) in anhyd benzene (1.2 mL) was heated at reflux temperature for
30 min under nitrogen. Azirine 2 (20 mg, 0.067 mmol) in anhyd benzene (1.2 mL) was then added and heating at this
temperature was continued for 2 h. The reaction mixture was then concentrated and
the residue purified by rapid chromatotron chromatography on neutral alumina (Merck
150, Type T) to minimise decomposition (toluene-EtOAc, 98:2) to give pyrrole 15 (19 mg, 0.018 mmol, 46%) as a colourless oil: [α]D -13.9 (c 0.14). IR (CHCl3): 3456, 1720 cm-1. The C
2 axis of symmetry lead to simplified NMR spectra. 1H NMR (500 MHz, CDCl3): δ = 1.05 (18 H, s), 1.10 (18 H, s), 1.34 (6 H, t, J = 7.3 Hz), 3.99 (2 H, dd, J = 10.7, 9.2 Hz), 4.15 (2 H, dd, J = 10.7, 4.1 Hz), 4.25 (2 H, s), 4.28 (2 H, dddd, J = 10.7, 6.9, 6.9, 6.9 Hz), 4.30 (2 H, dddd, J = 10.7, 6.9, 6.9, 6.9 Hz), 4.51 (2 H, d, J = 11.7 Hz), 4.70 (2 H, d, J = 11.7 Hz), 4.99 (2 H, ddd, J = 9.1, 9.1, 4.4 Hz), 5.78 (2 H, d, J = 8.5 Hz), 6.09 (2 H, s), 6.67 (2 H, d, J = 2.5 Hz), 7.18 (4 H, m), 7.30 (6 H, m), 7.72 (2 H, s), 9.28 (2 H, br s). 13C NMR (100.4 MHz, CDCl3): δ = 14.5 (CH3), 20.5 (C), 22.7 (C), 27.2 (3 × CH3), 27.5 (3 × CH3), 59.8 (CH2), 65.4 (CH2), 71.1 (CH), 71.9 (CH2), 73.2 (CH), 81.0 (CH), 86.8 (CH), 110.2 (C), 115.9 (CH), 125.7 (C), 128.0 (2 × CH),
128.1 (CH), 128.5 (2 × CH), 137.0 (C), 137.1 (C), 159.5 (CH), 165.3 (C). MS (EI):
m/z (%) = 1017 (<1) [M+ - C4H9], 836 (<1), 736 (5), 509 (27). HRMS: m/z calcd for C52H69N2O15Si2: 1017.4237; found: 1017.4208. Anal. Calcd for C56H78N2O15Si2: C, 62.54; H, 7.31; N, 2.60. Found: C, 62.71; H, 7.28; N, 2.51.