Synlett 2007(17): 2723-2727  
DOI: 10.1055/s-2007-991061
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Mono- and Bis-C-glycosylated 2,3,4-Trisubstituted 1H-Pyrroles as Cyclo- and Acyclo-C-nucleoside Analogues

Carmen R. Alonso-Cruz, Raimundo Freire, María S. Rodríguez, Ernesto Suárez*
Instituto de Productos Naturales y Agrobiología del C.S.I.C., Carretera de La Esperanza 3, 38206 La Laguna, Tenerife, Spain
Fax: +34(922)260135; e-Mail: esuarez@ipna.csic.es;
Further Information

Publication History

Received 31 July 2007
Publication Date:
25 September 2007 (online)

Abstract

A new method for the synthesis of mono- and bis-C-glycosylated 2,3,4-trisubstituted 1H-pyrroles, a type of cyclo- and ­acyclo-C-nucleoside analogues, is described. The reaction of readily available sensitive 2H-azirines derived from carbohydrates with 1,3-dicarbonyl compounds is catalysed by tris(triphenylsilyl)vanadate under mild conditions. The reaction of 2H-azirines with vanadium enolates has not been described previously. This methodology may be suitable for the synthesis of combinatorial libraries with the trisubstituted 1H-pyrrole skeleton as a molecular scaffold.

    References and Notes

  • 1a Wellington KW. Benner SA. Nucleosides, Nucleotides Nucleic Acids  2006,  25:  1309 
  • 1b Wu QP. Simons C. Synthesis  2004,  1533 
  • 1c Henry AA. Romesberg FE. Curr. Opin. Chem. Biol.  2003,  7:  727 
  • 1d Kool ET. Acc. Chem. Res.  2002,  35:  936 
  • 1e Kool ET. Morales JC. Guckian KM. Angew. Chem. Int. Ed.  2000,  39:  990 
  • For a review, see:
  • 2a Ramesh NG. Balasubramanian KK. Eur. J. Org. Chem.  2003,  4477 
  • For recent references, see:
  • 2b Bari A. Feist H. Michalik M. Peseke K. Molecules  2005,  10:  837 
  • 2c Otero I. Methling K. Feist H. Michalik M. Quincoces J. Reinke H. Peseke K. J. Carbohydr. Chem.  2005,  24:  809 
  • 2d Bari A. Milicevic S. Feist H. Michalik D. Michalik M. Peseke K. Synthesis  2005,  2758 
  • 2e Nasr AZ. Nucleosides, Nucleotides Nucleic Acids  2004,  23:  1825 ; and references cited therein
  • 3 Alonso-Cruz CR. Kennedy AR. Rodríguez MS. Suárez E. Org. Lett.  2003,  5:  3729 
  • For syntheses of related 1,4-anhydro-1-(1H-pyrrol-2-yl)alditol derivatives, see:
  • 4a Armitt DJ. Banwell MG. Freeman C. Parish CR. J. Chem. Soc., Perkin Trans. 1  2002,  1743 
  • 4b Nishimura N. Kato A. Maeba I. Carbohydr. Res.  2001,  331:  77 
  • 4c Yokoyama M. Nomura M. Togo H. Seki H. J. Chem. Soc., Perkin Trans. 1  1996,  2145 
  • 4d Yokoyama M. Akiba T. Togo H. Synthesis  1995,  638 
  • 4e Patil SA. Otter BA. Klein RS. Tetrahedron Lett.  1994,  35:  5339 
  • 4f Casiraghi G. Cornia M. Rassu G. Delsante C. Spanu P. Tetrahedron  1992,  48:  5619 
  • 4g Maeba I. Takeuchi T. Iijima T. Kitaori K. Muramatsu H. J. Chem. Soc., Perkin Trans. 1  1989,  649 
  • 4h Maeba I. Takeuchi T. Iijima T. Furukawa H. J. Org. Chem.  1988,  53:  1401 
  • 4i Perez JAG. Caballero RB. Ventula AC. Carbohydr. Res.  1985,  143:  129 
  • For a specific review on azirines in reactions involving pyrroles, see:
  • 5a Trofimov BA. Mikhaleva AI. Chem. Heterocycl. Compd. (Engl. Transl.)  1987,  23:  1037 
  • For general reviews of azirines, see:
  • 5b Palacios F. Ochoa de Retana AM. Martínez de Marigorta E. de los Santos JM. Org. Prep. Proced. Int.  2002,  34:  219 
  • 5c Palacios F. Ochoa de Retana AM. Martínez de Marigorta E. de los Santos JM. Eur. J. Org. Chem.  2001,  2401 
  • 5d Gilchrist TL. Aldrichimica Acta  2001,  34:  51 
  • 5e Zwanenburg B. ten Holte P. Top. Curr. Chem.  2001,  216:  93 
  • 5f Padwa A. Woolhouse AD. Comprehensive Heterocyclic Chemistry   Vol. 7:  Katritzky AR. Rees CW. Pergamon Press; Oxford: 1984.  p.47-93  
  • 5g Anderson DJ. Hassner A. Synthesis  1975,  483 
  • For recent examples of the addition of nucleophiles to azirines, see:
  • 5h Hassner A. Usak D. Kumareswaran R. Friedman O. Eur. J. Org. Chem.  2004,  2421 
  • 5i Pinho e Melo TMVD. Lopes CSJ. Rocha Gonsalves AM. Beja AM. Paixao JA. Silva MR. da Veiga LA. J. Org. Chem.  2002,  67:  66 
  • 6 Filho PF. Schuchardt U. Angew. Chem., Int. Ed. Engl.  1977,  16:  647 
  • 7 Narasimhan NS. Heimgartner H. Hansen H.-J. Schmid H. Helv. Chim. Acta  1973,  56:  1351 
  • 8 Alves MJ. Gilchrist TL. Sousa JH. J. Chem. Soc., Perkin Trans. 1  1999,  1305 
  • 9 Tchissambou L. Benechie M. Khuong-Huu F. Tetrahedron  1982,  38:  2687 
  • For a review on vanadium in organic synthesis, see:
  • 10a Hirao T. Chem. Rev.  1997,  97:  2707 
  • For nucleophilic addition catalysed by vanadium, see:
  • 10b Belokon YN. Green B. Ikonnikov NS. North M. Parsons T. Tararov VI. Tetrahedron  2001,  57:  771 
  • 10c Trost BM. Jonasson C. Wuchrer M. J. Am. Chem. Soc.  2001,  123:  12736 
  • 10d Trost BM. Oi S. J. Am. Chem. Soc.  2001,  123:  1230 
  • For the synthesis of VO(OSiPh3)3, see:
  • 11a Pauling H. Andrews DA. Hindley NC. Helv. Chim. Acta  1976,  59:  1233 
  • 11b Trost BM. Jonasson C. Angew. Chem. Int. Ed.  2003,  42:  2063 
  • 12a

    The catalytic activity of VO(OSiPh3)3 is more apparent with hindered 1,3-diketones; for example, in the absence of catalyst the reaction of 5α-cholestan-1,3-dione (see ref. 12b) with an excess of azirine 2 did not occur after 48 h in anhydrous CH2Cl2 at reflux temperature; notwithstanding, in the presence of 5 mol% of VO(OSiPh3)3 the reaction proceeded to completion in only 5 h to give a 6:4 mixture of regioisomers A and B in 96% yield (Scheme [3] ).

  • 12b Win WW. Franck RW. J. Org. Chem.  1997,  62:  4510 
  • For synthesis of 3-pyrrole acyclic C-nucleosides by other methods, see:
  • 13a Yu M. Brian L. Pagenkopf BL. Org. Lett.  2003,  5:  5099 
  • 13b Chiara J.-L. Gómez-Sánchez A. Hidalgo F.-J. Yruela I. Carbohydr. Res.  1989,  188:  55 
  • 13c Gómez-Sánchez A. Hidalgo F.-J. Chiara J.-L. Carbohydr. Res.  1987,  167:  55 
  • 13d González FG. Sánchez AG. Gómez JG. An. R. Soc. Esp. Fís. Quím., Ser. B  1958,  54:  513 
  • 13e González FG. Sánchez AG. Gómez JG. An. R. Soc. Esp. Fís. Quím., Ser. B  1958,  54:  519 
  • 13f Sánchez AG. Gómez JG. An. R. Soc. Esp. Fís. Quím., Ser. B  1958,  54:  753 
  • 14a Veronese AC. Morelli CF. Tetrahedron Lett.  1998,  39:  3853 
  • 14b Morelli CF. Manferdini M. Veronese AC. Tetrahedron  1999,  55:  10803 
  • 15a Dhavale DD. Bhujbal NN. Joshi P. Desai SG. Carbohydr. Res.  1994,  263:  303 
  • 15b Karche NP. Jachak SM. Dhavale DD. J. Org. Chem.  2001,  66:  6323 
  • 16a Tegdes A. Medgyes G. Boros S. Kuszmann J. Carbohydr. Res.  2006,  341:  776 
  • 16b van Delft FL. Valentijn ARPM. van der Marel GA. van Boom JH. J. Carbohydr. Chem.  1999,  18:  165 
  • 17 Holmquist CR. Roskamp EJ. J. Org. Chem.  1989,  54:  3258 
  • For other synthesis of C-glycoconjugates using C-glycosyl β-keto esters, see:
  • 18a Dondoni A. Massi A. Sabbatini S. Bertolasi V. J. Org. Chem.  2002,  67:  6979 
  • 18b Saha NN. Desai VN. Dhavale DD. J. Org. Chem.  1999,  64:  1715 
19

General Procedure for the Reaction of Azirines with 1,3-Dicarbonyl Compounds Catalyzed by VO(OSiPh 3 ) 3
A solution of the azirine (1 mmol) and 1,3-dicarbonyl (1-1.2 mmol) in an amount of CH2Cl2 depending on solubility (1-15 mL) containing VO(OSiPh3)3 (0.05 mmol) was stirred under nitrogen, at the temperature and for the time specified in each case in Table [1] and Scheme [2] . The reaction mixture was then concentrated under reduced pressure and the residue purified by silica gel column chromatography (hexanes-EtOAc mixtures).
Compound 6: crystalline solid, mp 161.3-163.3 °C (from n-hexane-EtOAc); [α]D +52 (c 0.073). IR: 3456, 1735, 1646 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.98 (3 H, s), 2.09 (3 H, s), 2.43 (3 H, s), 2.51 (3 H, s), 4.20 (1 H, dd, J = 12.2, 8.7 Hz), 4.32 (1 H, dd, J = 11.9, 2.7 Hz), 5.58 (1 H, ddd, J = 8.8, 2.6, 2.6 Hz), 6.59 (1 H, d, J = 3.4 Hz), 6.63 (1 H, d, J = 1.9 Hz), 8.15 (1 H, s), 8.96 (1 H, br s). 13C NMR (100.6 MHz, CDCl3): δ = 15.3 (CH3), 20.7 (CH3), 21.0 (CH3), 30.5 (CH3), 62.3 (CH2), 70.0 (CH), 72.2 (CH), 115.9 (CH), 120.1 (C), 120.8 (C), 135.0 (C), 160.3 (CH), 169.7 (C), 170.8 (C), 194.4 (C). MS (EI): m/z (%) = 325 (3) [M+], 279 (5), 265 (5), 236 (19), 152 (100). HRMS: m/z calcd for C15H19NO7: 325.1162; found: 325.1161. Anal. Calcd for C15H19NO7: C, 55.38; H, 5.89; N, 4.31. Found: C, 55.41; H, 5.71; N, 4.12.
Compound 7: crystalline solid, mp 159-161 °C (from n-hexane-CHCl3); [α]D +12.3 (c 0.073). IR 3456, 1735, 1655 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.08 (3 H, s), 1.09 (3 H, s), 1.98 (3 H, s), 2.07 (3 H, s), 2.32 (2 H, br s), 2.64 (2 H, br s), 4.17 (1 H, dd, J = 12.1, 8.0 Hz), 4.31 (1 H, dd, J = 12.2, 2.7 Hz), 5.84 (1 H, ddd, J = 7.3, 3.1, 3.1 Hz), 6.50 (1 H, d, J = 4.2 Hz), 6.73 (1 H, d, J = 2.3 Hz), 8.10 (1 H, s), 9.18 (1H, br s). 13C NMR (100.6 MHz, CDCl3): δ = 20.7 (CH3), 21.0 (CH3), 28.4 (CH3), 28.5 (CH3), 35.7 (C), 36.8 (CH2), 52.4 (CH2), 62.3 (CH2), 68.6 (CH), 72.0 (CH), 116.1 (C), 117.1 (C), 118.0 (CH), 143.4 (C), 160.2 (CH), 169.7 (C), 170.7 (C), 194.0 (C). MS (EI): m/z (%) = 365 (<1) [M+], 304 (14), 276 (29), 220 (38); 192 (100). HRMS: m/z calcd for C18H23NO7: 365.1475; found: 365.1459. Anal. Calcd for C18H23NO7: C, 59.17; H, 6.34; N, 3.83. Found: C, 59.35; H, 6.54; N, 3.51.
Compound 8: crystalline solid, mp 66.4-68.4 °C (from n-hexane-EtOAc); [α]D -13.5 (c 0.07). IR: 3467, 1717, 1655 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.03 (9 H, s), 1.10 (9 H, s), 2.466 (3 H, s), 2.474 (3 H, s), 4.01 (1 H, dd, J = 10.9, 9.0 Hz), 4.15 (1 H, dd, J = 10.6, 4.0 Hz), 5.14 (1 H, ddd, J = 8.7, 8.7, 4.0 Hz), 5.77 (1 H, d, J = 8.2 Hz), 6.70 (1 H, d, J = 2.7 Hz), 7.86 (1 H, s), 8.90 (1 H, br s). 13C NMR (125.7 MHz, CDCl3): δ = 15.1 (CH3), 20.4 (C), 22.6 (C), 27.1 (3 × CH3), 27.4 (3 × CH3), 30.8 (CH3), 65.1 (CH2), 71.1 (CH), 72.2 (CH), 114.9 (CH), 120.5 (C), 125.7 (C), 135.0 (C), 159.6 (CH), 195.3 (C). MS-FAB: m/z (%) = 382 (12) [M+ + 1], 324 (10). HRMS: m/z calcd for C19H32NO5Si: 382.2050; found: 382.2086. Anal. Calcd for C19H31NO5Si: C, 59.81; H, 8.19; N, 3.67. Found: C, 60.16; H, 8.41; N, 3.32.
Compound 9: oil; [α]D +23 (c 0.09). IR: 3455, 1747, 1640 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.95 (6 H, s), 1.96 (3 H, s), 2.11 (3 H, s), 2.12 (3 H, s), 2.41 (3 H, s), 2.51 (3 H, s), 3.81 (1 H, dd, J = 6.9, 6.9 Hz), 3.97 (1 H, dd, J = 10.9, 6.9 Hz), 4.05 (1 H, dd, J = 10.9, 6.4 Hz), 4.10 (1 H, dd, J = 12.2, 9.0 Hz), 4.28 (1 H, dd, J = 12.2, 2.2 Hz), 4.73 (1 H, d, J = 8.0 Hz), 5.02 (1 H, dd, J = 10.3, 3.5 Hz), 5.22 (1 H, dd, J = 10.3, 8.0 Hz), 5.35 (1 H, dd, J = 3.4, 1.1 Hz), 5.45 (1 H, ddd, J = 9.0, 2.1, 2.1 Hz), 5.54 (1 H, dd, J = 2.9, 1.1 Hz), 6.71 (1 H, dd, J = 2.2, 0.8 Hz), 8.18 (1 H, s), 8.75 (1 H, br s). 13C NMR (100.6 MHz, CDCl3): δ = 15.5 (CH3), 20.48 (CH3), 20.50 (CH3), 20.6 (CH3), 20.7 (CH3), 20.8 (CH3), 30.5, (CH3), 60.9 (CH2), 62.3 (CH2), 67.0 (CH), 69.1 (CH), 70.6 (CH), 70.8 (CH), 74.5 (CH), 77.5 (CH), 101.6, (CH), 116.8 (CH), 119.6 (C), 122.2 (C), 134.8 (C), 160.5 (CH), 169.9 (C), 170.0 (C), 170.2 (C), 170.3 (C), 170.8 (C), 194.3 (C). MS (EI): m/z (%) = 613 (1) [M+], 567 (<1), 508 (<1), 482 (<1), 331 (100), 282 (38). HRMS: m/z calcd for C27H35NO15: 613.2007; found: 613.2023. Anal. Calcd for C27H35NO15: C, 52.85; H, 5.75; N, 2.28. Found: C, 52.86; H, 5.92; N, 2.10.
Compound 11: colourless oil; [α]D +20.2 (c 0.143). IR (neat): 3405, 1729 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.09 (9 H, s), 1.13 (9 H, s), 1.17 (3 H, t, J = 6.8 Hz), 4.00 (1 H, dd, J = 9.7, 9.7 Hz), 4.13 (1 H, dddd, J = 10.7, 7.3, 7.3, 7.3 Hz), 4.15 (1 H, dd, J = 10.6, 4.4 Hz), 4.21 (1 H, dddd, J = 10.7, 7.3, 7.3, 7.3 Hz), 4.70 (1 H, ddd, J = 7.8, 4.4, 2.4 Hz), 4.74 (1 H, dd, J = 12.1, 2.4 Hz), 4.79 (1 H, dd, J = 12.6, 4.8 Hz), 5.02 (1 H, ddd, J = 9.2, 9.2, 4.4 Hz), 5.72 (1 H, dd, J = 7.8, 4.9 Hz), 5.85 (1 H, dd, J = 4.9, 2.4 Hz), 5.87 (1 H, d, J = 8.7 Hz), 5.93 (1 H, d, J = 1.9 Hz), 6.70 (1 H, d, J = 2.4 Hz), 7.28 (2 H, dd, J = 7.8, 7.8 Hz), 7.45 (2 H, dd, J = 7.8, 7.8 Hz), 7.49 (3 H, dd, J = 7.8, 7.8 Hz), 7.60 (2 H, dd, J = 7.3, 7.3 Hz), 7.79 (1 H, s), 7.80 (2 H, m), 8.07 (4 H, m), 9.65 (1 H, br s). 13C NMR (125.7 MHz, CDCl3): δ = 14.3 (CH3), 20.5 (C), 22.7 (C), 27.2 (3 × CH3), 27.5 (3 × CH3), 59.8 (CH2), 63.6 (CH2), 65.5 (CH2), 70.3 (CH), 70.9 (CH), 72.8 (CH), 77.3 (CH), 78.5 (CH), 78.8 (CH), 110.0 (C), 116.2 (CH), 127.5 (C), 128.3 (2 × CH), 128.5 (2 × CH), 128.8 (2 × CH), 129.4 (3 × C), 129.8 (2 × CH), 129.8 (2 × CH), 129.9 (2 × CH), 133.4 (CH), 133.4 (CH), 133.7 (CH), 134.6 (C), 159.5 (CH), 164.5 (C), 165.1 (C), 165.3 (C), 166.9 (C). MS (EI): m/z (%) = 841 (<1) [M+], 784 (26), 738 (6), 719 (8), 662 (6), 418 (22), 105 (100). HRMS: m/z calcd for C45H51NO13Si: 841.3130; found: 841.3135. Anal. Calcd for C45H51NO13Si: C, 64.19; H, 6.11; N, 1.66. Found: C, 64.24; H, 6.16; N, 1.83.
Compound 13: colourless oil; [α]D -55.3 (c 0.19). IR (neat): 3353, 1728 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.07 (3 × 3 H, s), 1.13 (3 × 3 H, s), 1.28 (1 H, t, J = 7.2 Hz), 1.35 (3 H, s), 1.53 (3 H, s), 4.02 (1 H, dd, J = 10.6, 9.3 Hz), 4.06 (1 H, d, J = 11.7 Hz), 4.16-4.27 (4 H, m), 4.29 (1 H, d, J = 2.9 Hz), 4.67 (1 H, d, J = 4.0 Hz), 5.13 (1 H, ddd, J = 9.0, 9.0, 4.8 Hz), 5.81 (1 H, d, J = 2.9 Hz), 5.90 (1 H, d, J = 8.8 Hz), 6.03 (1 H, d, J = 3.7 Hz), 6.91 (1 H, d, J = 2.7 Hz), 6.97 (2 H, m), 7.26 (3 H, m), 7.70 (1 H, s), 8.99 (1 H, br s). 13C NMR (100.4 MHz, CDCl3): δ = 14.4 (CH3), 20.5 (C), 22.67 (C), 26.4 (CH3), 26.94 (CH3), 27.2 (3 × CH3), 27.5 (3 × CH3), 59.7 (CH2), 65.4 (CH2), 70.6 (CH), 72.3 (CH2), 72.8 (CH), 76.8 (CH), 82.2 (CH), 83.6 (CH), 104.5 (CH), 110.1 (C), 112.1 (C), 116.1 (CH), 126.3 (C), 127.6 (2 × CH), 128.0 (CH), 128.4 (2 × CH), 133.0 (C), 137.1 (C), 159.4 (CH), 164.7 (C). MS (EI): m/z (%) = 645 (1) [M+], 630 (2), 588 (44), 496 (11), 91 (100). HRMS: m/z calcd for C33H47NO10Si: 645.2969; found: 645.2985. Anal. Calcd for C33H47NO10Si: C, 61.37; H, 7.34; N, 2.17. Found: C, 61.55; H, 7.40; N, 2.29.
Compound 15: A solution of the crude 14 (17.2 mg, 0.0335 mmol) and VO(OSiPh3)3 (3 mg, 0.003 mmol) in anhyd benzene (1.2 mL) was heated at reflux temperature for 30 min under nitrogen. Azirine 2 (20 mg, 0.067 mmol) in anhyd benzene (1.2 mL) was then added and heating at this temperature was continued for 2 h. The reaction mixture was then concentrated and the residue purified by rapid chromatotron chromatography on neutral alumina (Merck 150, Type T) to minimise decomposition (toluene-EtOAc, 98:2) to give pyrrole 15 (19 mg, 0.018 mmol, 46%) as a colourless oil: [α]D -13.9 (c 0.14). IR (CHCl3): 3456, 1720 cm-1. The C 2 axis of symmetry lead to simplified NMR spectra. 1H NMR (500 MHz, CDCl3): δ = 1.05 (18 H, s), 1.10 (18 H, s), 1.34 (6 H, t, J = 7.3 Hz), 3.99 (2 H, dd, J = 10.7, 9.2 Hz), 4.15 (2 H, dd, J = 10.7, 4.1 Hz), 4.25 (2 H, s), 4.28 (2 H, dddd, J = 10.7, 6.9, 6.9, 6.9 Hz), 4.30 (2 H, dddd, J = 10.7, 6.9, 6.9, 6.9 Hz), 4.51 (2 H, d, J = 11.7 Hz), 4.70 (2 H, d, J = 11.7 Hz), 4.99 (2 H, ddd, J = 9.1, 9.1, 4.4 Hz), 5.78 (2 H, d, J = 8.5 Hz), 6.09 (2 H, s), 6.67 (2 H, d, J = 2.5 Hz), 7.18 (4 H, m), 7.30 (6 H, m), 7.72 (2 H, s), 9.28 (2 H, br s). 13C NMR (100.4 MHz, CDCl3): δ = 14.5 (CH3), 20.5 (C), 22.7 (C), 27.2 (3 × CH3), 27.5 (3 × CH3), 59.8 (CH2), 65.4 (CH2), 71.1 (CH), 71.9 (CH2), 73.2 (CH), 81.0 (CH), 86.8 (CH), 110.2 (C), 115.9 (CH), 125.7 (C), 128.0 (2 × CH), 128.1 (CH), 128.5 (2 × CH), 137.0 (C), 137.1 (C), 159.5 (CH), 165.3 (C). MS (EI): m/z (%) = 1017 (<1) [M+ - C4H9], 836 (<1), 736 (5), 509 (27). HRMS: m/z calcd for C52H69N2O15Si2: 1017.4237; found: 1017.4208. Anal. Calcd for C56H78N2O15Si2: C, 62.54; H, 7.31; N, 2.60. Found: C, 62.71; H, 7.28; N, 2.51.