References and Notes
<A NAME="RU06207ST-1A">1a</A>
Jagodziński TS.
Chem. Rev.
2003,
103:
197
<A NAME="RU06207ST-1B">1b</A>
Klingele MH.
Brooker S.
Eur. J. Org. Chem.
2004,
3422
<A NAME="RU06207ST-1C">1c</A>
Murai T.
Aso H.
Tatematsu Y.
Itoh Y.
Niwa H.
Kato S.
J. Org. Chem.
2003,
68:
8514
<A NAME="RU06207ST-1D">1d</A>
Ach D.
Reboul V.
Metzner P.
Eur. J. Org. Chem.
2002,
2573
<A NAME="RU06207ST-1E">1e</A>
Ares JJ.
Synth. Commun.
1991,
21:
625
<A NAME="RU06207ST-1F">1f</A>
Zbruyev OI.
Stiasni N.
Kappe CO.
J. Comb. Chem.
2003,
5:
145
<A NAME="RU06207ST-1G">1g</A>
Murai T.
Top. Curr. Chem.
2005,
251:
247
<A NAME="RU06207ST-2A">2a</A>
Petrova D.
Jakopčić K.
Croat. Chem. Acta
1976,
48:
319
<A NAME="RU06207ST-2B">2b</A>
Downer NK.
Jackson YA.
Org. Biomol. Chem.
2004,
2:
3039
<A NAME="RU06207ST-2C">2c</A>
Mathis CA.
Wang Y.
Holt DP.
Huang G.-F.
Debnath ML.
Klunk WE.
J. Med. Chem.
2003,
46:
2740
<A NAME="RU06207ST-3A">3a</A>
Inoue Y.
Kanbara T.
Yamamoto T.
Tetrahedron Lett.
2003,
44:
5167
<A NAME="RU06207ST-3B">3b</A>
Akaiwa M.
Kanbara T.
Fukumoto H.
Yamamoto T.
J. Organomet. Chem.
2005,
690:
4192
<A NAME="RU06207ST-3C">3c</A>
Okamoto K.
Kanbara T.
Yamamoto T.
Wada A.
Organometallics
2006,
25:
4026
<A NAME="RU06207ST-3D">3d</A>
Kagaya S.
Sato E.
Masore I.
Hasegawa K.
Kanbara T.
Chem. Lett.
2003,
32:
622
<A NAME="RU06207ST-4A">4a</A>
Kindler K.
Justus Liebigs Ann. Chem.
1923,
431:
187
<A NAME="RU06207ST-4B">4b</A>
Carmack M.
Spielman MA.
Org. React. (N. Y.)
1946,
3:
83
<A NAME="RU06207ST-4C">4c</A>
Brown EV.
Synthesis
1975,
358 ; and references cited therein
<A NAME="RU06207ST-5A">5a</A>
Böttcher B.
Bauer F.
Justus Liebigs Ann. Chem.
1950,
568:
218
<A NAME="RU06207ST-5B">5b</A>
Tandel S.
Bliznets I.
Ebinger K.
Ma Y.-A.
Bhumralkar D.
Thiruvazhi M.
Tetrahedron Lett.
2004,
45:
2321
<A NAME="RU06207ST-5C">5c</A>
Pelova R.
Kozhukharova A.
Nauchni Trudove Plovdiv. Univ. Paisii Khilendarski, Khim
1982,
20:
79
<A NAME="RU06207ST-6">6</A>
Bulavka VN.
Proceedings of ECSOC-8, The Eight International Electronic Conference on Synthetic
Organic Chemistry
MDPI;
Basel:
2004.
p.E008
<A NAME="RU06207ST-7A">7a</A>
Varma RS.
Kumar D.
Org. Lett.
1999,
1:
697
<A NAME="RU06207ST-7B">7b</A>
Curphey TJ.
J. Org. Chem.
2002,
67:
6461
<A NAME="RU06207ST-8A">8a</A>
Poupaert JH.
Bouinidane K.
Renard M.
Lambert DM.
Isa M.
Org. Prep. Proced. Int.
2001,
33:
335
<A NAME="RU06207ST-8B">8b</A>
Moghaddam FM.
Boinee HZ.
Taheri S.
J. Sulfur Chem.
2004,
25:
407
<A NAME="RU06207ST-9">9</A>
Experimental Procedure (Table
[1]
, entry 9): Na2S·9H2O (216 mg, 15 mol%) was added to a mixture of sulfur (160 mg, 5 mmol as elemental
sulfur) and aniline (0.55 mL, 6 mmol) in DMF (4 mL), and the suspension was stirred
at 115 °C for 0.5 h under nitrogen. After the mixture was cooled to r.t., benzaldehyde
(0.41 mL, 4 mmol) was added, and was stirred at 115 °C for 12 h under nitrogen. After
cooling to r.t., the resulting solution was quenched with sat. aq NH4Cl solution (50 mL) and extracted with CHCl3 (50 mL). The organic fraction was thoroughly washed with H2O (2 × 50 mL) and dried with anhyd Na2SO4. After concentration, the resulting crude product was purified by chromatography
on silica gel with CHCl3 to afford N-phenylthiobenzamide as a yellow powder (780 mg, 91% yield); mp 99 °C, lit.7 99 °C.
<A NAME="RU06207ST-10">10</A>
N
-(4-Methoxyphenyl)thiobenzamide (Table
[2]
, entry 2): yellow powder; mp 135 °C, lit.7 135 °C.
4-Methoxy-
N
-phenylthiobenzamide (Table
[2]
, entry 3): yellow powder; mp 154 °C, lit.7 153-154 °C.
4-Methoxy-
N
-(4-methoxyphenyl)thiobenzamide (Table
[2]
, entry 4): yellow powder; mp 148 °C, lit.7 148 °C.
1,3-Bis(anilinothiocarbonyl)benzene (Table
[2]
, entry 5): yellow powder; mp 243-244 °C, lit.2a 242-244 °C.
1,4-Bis(anilinothiocarbonyl)benzene (Table
[2]
, entry 6): yellow powder; mp 280-281 °C, lit.2a 280-282 °C.
N
-(4-Nitrophenyl)thiobenzamide (Table
[2]
, entry 7): yellow powder; mp 145-146 °C, lit.13 145 °C.
N
-(4-Pyridyl)thiobenzamide (Table
[2]
, entry 8): yellow powder; mp 187-188 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 11.99 (s, 1 H), 9.59 (d, J = 6.4 Hz, 2 H), 8.00 (d, J = 6.4 Hz, 2 H), 7.78 (d, J = 7.6 Hz, 2 H), 7.55 (t, J = 7.6 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 2 H). 13C{1H} NMR (100 MHz, DMSO-d
6): δ = 199.35, 150.17, 146.64, 142.78, 130.99, 128.00, 127.37, 116.67. Anal. Calcd
for C12H10N2S: C, 67.26; H, 4.70; N, 13.07; S, 14.96. Found: C, 67.32; H, 4.52; N, 13.15; S, 14.88.
N
-(3-Pyridyl)thiobenzamide (Table
[2]
, entry 9): yellow powder; mp 140-141 °C, lit.14 140-141 °C.
N
-(6-Quinolyl)thiobenzamide (Table
[2]
, entry 10): orange powder; mp 177-179 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 12.03 (s, 1 H), 8.90 (br, 1 H), 8.56 (br, 1 H), 8.38 (d, J = 8.0 Hz, 1 H), 8.05-8.11 (m, 2 H), 7.89 (d, J = 7.6 Hz, 2 H), 7.53-7.56 (m, 2 H), 7.49 (t, J = 7.6 Hz, 2 H). 13C{1H} NMR (100 MHz, DMSO-d
6): δ = 199.81, 151.99, 147.55, 144.08, 139.55, 137.49, 132.50, 130.65, 129.67, 129.29,
129.08, 128.86, 123.41, 123.00. Anal. Calcd for C16H12N2S: C, 72.70; H, 4.58; N, 10.60; S, 12.13. Found: C, 72.62; H, 4.51; N, 10.60; S, 11.97.
4
-
Cyano
-N
-phenylthiobenzamide (Table
[2]
, entry 11): orange powder; mp 130-131 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 12.01 (s, 1 H), 7.91-7.93 (br, 4 H), 7.83 (d, J = 8.0 Hz, 2 H), 7.44 (t, J = 8.0 Hz, 2 H), 7.29 (t, J = 8.0 Hz, 1 H). 13C{1H} NMR (100 MHz, DMSO-d
6): δ = 195.16, 146.14, 139.47, 131.96, 128.42, 127.95, 126.42, 123.74, 118.27, 112.54.
Anal. Calcd for C14H10N2S: C, 70.56; H, 4.23; N, 11.76. Found: C, 70.85; H, 4.45; N, 11.71.
N
-Phenyl-2-pyridinethioamide (Table
[2]
, entry 12): orange-yellow powder; mp 45 °C, lit.15 45 °C.
<A NAME="RU06207ST-11A">11a</A>
Davis RE.
Nakshbendi HF.
J. Am. Chem. Soc.
1962,
84:
2085
<A NAME="RU06207ST-11B">11b</A>
McMillan FH.
King JA.
J. Am. Chem. Soc.
1948,
70:
4143
<A NAME="RU06207ST-11C">11c</A>
Vineyard BD.
J. Org. Chem.
1967,
32:
3833
<A NAME="RU06207ST-11D">11d</A>
MacColl R.
Windwer S.
J. Phys. Chem.
1970,
74:
1261
<A NAME="RU06207ST-11E">11e</A>
Sato R.
Sato T.
Segawa K.
Takikawa Y.
Takizawa S.
Oae S.
Phosphorus, Sulfur Silicon Relat. Elem.
1979,
7:
213
<A NAME="RU06207ST-12">12</A>
Preparation of Thiobenzamide (Scheme
[4]
): Na2S·9H2O (244 mg, 1 mmol) was added to a mixture of sulfur (160 mg, 5 mmol as elemental sulfur)
and 28% aq NH3 (3 mL, ca. 44 mmol) in DMF (4 mL), and the suspension was stirred at 115 °C for 0.5
h under nitrogen. After the mixture was cooled to r.t., benzaldehyde (0.41 mL, 4 mmol)
was added, and stirred at 115 °C for 12 h under nitrogen. After cooling to r.t., the
resulting solution was quenched with sat. aq NH4Cl solution (50 mL) and extracted with CHCl3 (50 mL). The organic fraction was thoroughly washed with H2O (2 × 50 mL) and dried with anhyd Na2SO4. After concentration, the resulting crude material was purified by chromatography
on silica gel with CHCl3-Et2O (100:0-20:80) to afford thiobenzamide as a pale yellow powder (270 mg, 49% yield);
mp 118 °C, lit.7b 117-118 °C.
<A NAME="RU06207ST-13">13</A>
Reynaud P.
Moreau RC.
Samama JP.
Bull. Soc. Chim. Fr.
1965,
12:
3623
<A NAME="RU06207ST-14">14</A>
Couture A.
Grandclaudon P.
Synthesis
1985,
5:
533
<A NAME="RU06207ST-15">15</A>
Mazumder UK.
Gupta M.
Karki SS.
Bhattacharya S.
Rathinasamy S.
Sivakumar T.
Bioorg. Med. Chem.
2005,
13:
5766