References and Notes
<A NAME="RW15207ST-1A">1a</A>
Anastas PT.
Green Chem.
2003,
5:
G29
<A NAME="RW15207ST-1B">1b</A>
Williamson TC.
Kirchhoff M.
Anastas PT.
Green Chem.
2000,
2:
G85
<A NAME="RW15207ST-1C">1c</A>
Anastas PT.
Lankey RL.
Green Chem.
2000,
2:
289
<A NAME="RW15207ST-1D">1d</A>
Clark JH.
Green Chem.
1999,
1:
1
<A NAME="RW15207ST-2">2</A>
Darensbourg DJ.
Holtcamp MW.
Coord. Chem. Rev.
1996,
153:
155
<A NAME="RW15207ST-3">3</A>
Shaikh A.-AG.
Sivaram S.
Chem. Rev.
1996,
96:
951
<A NAME="RW15207ST-4">4</A>
Yoshida M.
Ihara M.
Chem. Eur. J.
2004,
10:
2886
<A NAME="RW15207ST-5">5</A>
Clements JH.
Ind. Eng. Chem. Res.
2003,
42:
663
<A NAME="RW15207ST-6">6</A>
Parrish JP.
Salvatore RN.
Jung KW.
Tetrahedron
2000,
56:
8207
<A NAME="RW15207ST-7">7</A>
Peppel WJ.
Ind. Eng. Chem. Res.
1958,
50:
767
For examples of the coupling of CO2 and epoxides catalyzed by solid catalysts systems, see:
<A NAME="RW15207ST-8A">8a</A>
Nishikubo T.
Kameyama A.
Yamashita J.
Tomoi M.
Fukuda W.
J. Polym. Sci., Part A: Polym. Chem.
1993,
31:
939
<A NAME="RW15207ST-8B">8b</A>
Du Y.
Cai F.
Kong DL.
He LN.
Green Chem.
2005,
7:
518
<A NAME="RW15207ST-8C">8c</A>
Tu M.
Davis RJ.
J. Catal.
2001,
199:
85
<A NAME="RW15207ST-8D">8d</A>
Yasuda H.
He LN.
Sakadura T.
J. Catal.
2002,
209:
547
<A NAME="RW15207ST-8E">8e</A>
Yasuda H.
He LN.
Sakadura T.
Stud. Surf. Sci. Catal.
2003,
145:
259
<A NAME="RW15207ST-8F">8f</A>
Aresta M.
Dibenedetto A.
Gianfrate L.
Pastore C.
Appl. Catal. A: Gen.
2003,
255:
5
<A NAME="RW15207ST-8G">8g</A>
Aresta M.
Dibenedetto A.
Gianfrate L.
Pastore C.
J. Mol. Catal. A: Chem.
2003,
204:
245
<A NAME="RW15207ST-8H">8h</A>
Yano T.
Matsui H.
Koike T.
Isighuro H.
Fujihara H.
Yoshihara M.
Maeshima T.
Chem. Commun.
1997,
1229
<A NAME="RW15207ST-8I">8i</A>
Bhanage BM.
Fujita S.
Ikushima Y.
Arai M.
Appl. Catal. A: Gen.
2001,
219:
259
<A NAME="RW15207ST-8J">8j</A>
Yamaguchi K.
Ebitani K.
Yoshida T.
Yoshida H.
Kaneda K.
J. Am. Chem. Soc.
1999,
121:
4526
<A NAME="RW15207ST-8K">8k</A>
Xiao LF.
Li FW.
Xia CG.
Appl. Catal. A: Gen.
2005,
279:
125
<A NAME="RW15207ST-8L">8l</A>
Aresta M.
Dibenedetto A.
Gianfrate L.
Pastore C.
J. Mol. Catal. A: Chem.
2003,
204:
245
<A NAME="RW15207ST-8M">8m</A>
Kim HS.
Kim JJ.
Kwon HN.
Chung MJ.
Lee BG.
Jang HG.
J. Catal.
2002,
205:
226
<A NAME="RW15207ST-8N">8n</A>
Shi F.
Zhang Q.
He Y.
Deng Y.
J. Am. Chem. Soc.
2005,
127:
4182
<A NAME="RW15207ST-8O">8o</A>
Srivastava R.
Srinivas D.
Ratnasamy P.
J. Catal.
2005,
233:
1
<A NAME="RW15207ST-8P">8p</A>
Xie HB.
Duan HF.
Li SH.
Zhang SB.
New J. Chem.
2005,
29:
1199
<A NAME="RW15207ST-8Q">8q</A>
Barbarini A.
Maggii R.
Mazzacani A.
Mori G.
Sartori G.
Sartorio R.
Tetrahedron Lett.
2003,
44:
2931
<A NAME="RW15207ST-8R">8r</A>
Wang JQ.
Kong DL.
Chen JY.
Cai F.
He LN.
J. Mol. Catal. A: Chem.
2006,
249:
143
<A NAME="RW15207ST-8S">8s</A>
Takahashi T.
Watahiki T.
Kitazume S.
Yasuda H.
Sakakura T.
Chem. Commun.
2006,
1664
<A NAME="RW15207ST-8T">8t</A>
Wang JQ.
Yue XD.
Cai F.
He LN.
Catal. Commun.
2007,
8:
167
<A NAME="RW15207ST-8U">8u</A>
Zhao Y.
Tian JS.
Qi XH.
Han ZN.
Zhang YY.
He LN.
J. Mol. Catal. A: Chem.
2007,
271:
284
<A NAME="RW15207ST-8V">8v</A>
Srivastava R.
Srinivas D.
Ratnasamy P.
Appl. Catal. A: Gen.
2005,
289:
128
<A NAME="RW15207ST-8W">8w</A>
Zhu AL.
Jiang T.
Han BX.
Zhang JC.
Xie Y.
Ma XM.
Green Chem.
2007,
9:
169
For recent reports concerning the properties and applications of PEGs, see:
<A NAME="RW15207ST-9A">9a</A>
Heldebrant DJ.
Jessop PG.
J. Am. Chem. Soc.
2003,
125:
5600
<A NAME="RW15207ST-9B">9b</A>
Annunziata R.
Benaglia M.
Cinquini M.
Cozzi F.
Tocco G.
Org. Lett.
2000,
2:
1737
<A NAME="RW15207ST-9C">9c</A>
Reetz MT.
Wiesenhöfer W.
Chem. Commun.
2004,
2750
<A NAME="RW15207ST-9D">9d</A>
Chen J.
Spear SK.
Huddleston JG.
Rogers RD.
Green Chem.
2005,
7:
64 ; and references cited therein
<A NAME="RW15207ST-9E">9e</A>
Chandrasekhar S.
Narsihmulu C.
Sultana SS.
Reddy NR.
Chem. Commun.
2003,
1716
<A NAME="RW15207ST-9F">9f</A>
Solinas M.
Jiang J.
Stelzer O.
Leitner W.
Angew. Chem. Int. Ed.
2005,
44:
2291
<A NAME="RW15207ST-9G">9g</A>
Hou Z.
Theyssen N.
Brinkmann A.
Leitner W.
Angew. Chem. Int. Ed.
2005,
44:
1346
<A NAME="RW15207ST-9H">9h</A>
Cernovska K.
Kemter M.
Gallmeier H.-C.
Rzepecki P.
Schrader T.
König B.
Org. Biomol. Chem.
2004,
2:
1603
<A NAME="RW15207ST-9I">9i</A>
Attanasi OA.
Crescentini LD.
Favi G.
Filippone P.
Lillini S.
Mantellini F.
Santeusanio S.
Org. Lett.
2005,
7:
2469
<A NAME="RW15207ST-9J">9j</A>
Jessop P.
Wyne DC.
DeHaai S.
Nakawatase D.
Chem. Commun.
2000,
693
<A NAME="RW15207ST-9K">9k</A>
Du Y.
Wang JQ.
Chen JY.
Cai F.
Tian JS.
Kong DL.
He LN.
Tetrahedron Lett.
2006,
47:
1271
For the properties and applications of ionic liquids, see:
<A NAME="RW15207ST-10A">10a</A>
Holbrey JD.
Seddon KR.
Clean Prod. Process.
1999,
1:
223
<A NAME="RW15207ST-10B">10b</A>
Welton T.
Chem. Rev.
1999,
99:
2071
<A NAME="RW15207ST-10C">10c</A>
Gordon CM.
Appl. Catal. A: Gen.
2001,
222:
101
<A NAME="RW15207ST-10D">10d</A>
Wasserscheid P.
Keim W.
Angew. Chem. In. Ed.
2000,
39:
3772
<A NAME="RW15207ST-10E">10e</A>
Sheldon R.
Chem. Commun.
2001,
2399
<A NAME="RW15207ST-10F">10f</A>
Earle MJ.
Seddon KR.
Pure Appl. Chem.
2000,
72:
1391
<A NAME="RW15207ST-10G">10g</A>
Dupont J.
de Souza RF.
Suarez PAZ.
Chem. Rev.
2002,
102:
3667
<A NAME="RW15207ST-10H">10h</A>
Zhao DB.
Wu M.
Kou Y.
Min EZ.
Catal. Today
2002,
74:
157
<A NAME="RW15207ST-10I">10i</A>
Anthony JL.
Maginn EJ.
Brennecke JF.
J. Phys. Chem. B.
2002,
106:
7315
<A NAME="RW15207ST-10J">10j</A>
Zhang SJ.
Chen YH.
Li FW.
Lu XM.
Dai WB.
Mori R.
Catal. Today
2006,
115:
61
<A NAME="RW15207ST-10K">10k</A>
Xie HB.
Li SH.
Zhang SB.
J. Mol. Catal. A: Chem.
2006,
250:
30
<A NAME="RW15207ST-10L">10l</A>
Li H.
Wu J.
Brunel S.
Monnet C.
Baudry R.
Perchec PL.
Ind. Eng. Chem. Res.
2005,
44:
8641
<A NAME="RW15207ST-10M">10m</A>
Violleau F.
Thiehaud-Roux S.
Borredon E.
Gars LP.
Tetrahedron
2002,
58:
8607
<A NAME="RW15207ST-10N">10n</A>
Xie HB.
Zhang SB.
Duan HF.
Tetrahedron Lett.
2004,
45:
1271
<A NAME="RW15207ST-10O">10o</A>
Duan HF.
Li SH.
Li YJ.
Xie HB.
Zhang SB.
Wang ZM.
Chem. Res. Chin. Univ.
2004,
20:
568
<A NAME="RW15207ST-11">11</A>
Annunziata R.
Benaglia M.
Cinquini M.
Cozzi F.
Tocco G.
Org. Lett.
2000,
2:
1737
<A NAME="RW15207ST-12A">12a</A>
Pruszynski P.
Can. J. Chem.
1987,
65:
626
<A NAME="RW15207ST-12B">12b</A>
Duan HF.
Zhang SB.
Lin YJ.
Qiu ZM.
Wang ZM.
Chem. J. Chin. Univ.
2003,
24:
2024
<A NAME="RW15207ST-13">13</A>
The pentaalkylguanidine 3 was synthesized from 1,3-dimethylimidazolidin-2-one(1), POCl3 and BuNH2 by the methods reported in the literature;12b colorless liquid; yield: 71% (lit.12b 85%). 1H NMR (300 MHz, CDCl3): δ = 0.91 (t, J = 14.4 Hz, 3 H, Me), 1.33-1.41 (m, 2 H, CH2), 1.48-1.58 (m, 2 H, CH2), 2.79 (s, 6 H, Me), 3.14 (s, 4 H, NCH2), 3.34 (s, 2 H, CH2).
<A NAME="RW15207ST-14">14</A>
Procedure for the Synthesis of PEG-Supported Guanidinium Bromide 4: To a solution of polyethylene glycol bromide (12 g, 0.002 mol) in toluene (150 mL),
pentaalkylguanidine 3 (3.38 g, 0.02 mol) was added, and the resulting solution was stirred at 65 °C for
72 h. After the reaction was completed, the solvent was removed under reduced pressure,
and then anhyd Et2O (40 mL) was added. The product was precipitated and isolated by filtration, then
washed by anhyd Et2O and dried to obtain the product 4 (94%); white powder; mp 53-55 °C. IR: 1638 (C=N) cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.89 (t, J = 14.7 Hz, 6 H, 2 × Me), 1.29-1.36 (m, 4 H, 2 × CH2), 1.62-1.72 (m, 4 H, 2 × CH2), 3.11 (s, 6 H, 2 × Me), 3.60 (m, 4 H, OCH2CH2O). 13C NMR (75 MHz, CDCl3): δ = 13.08, 19.13, 31.69, 34.85, 43.08, 49.02, 69.90, 158.72.
<A NAME="RW15207ST-15">15</A>
Representative Procedure for the Cycloaddition Reaction of Epoxide with CO
2
: In a 25-mL inner volume stainless-steel autoclave equipped with a magnetic stirrer,
isopropyl glycidyl ether (15.8 mmol) and PEG-supported hexaalkylguanidinium bromide
(0.5 mol%) were added, and CO2 (liquid, 3.0 MPa) was charged into the reactor at r.t. The initial pressure was generally
adjusted to 4 MPa at 110 °C. The reactor was heated at that temperature for 4 h. After
cooling, the products were separated by adding Et2O and analyzed by a gas chromatograph (Shimadzu GC-2014) equipped with a capillary
column (RTX-5, 30 m × 0.25 µm) using a flame ionization detector and the side-products
were detected by GC-MS. All of the products were further identified using GC-MS by
comparing the retention times and fragmentation patterns with authentic samples. The
structures of the isolated products were also characterized by 1H NMR and 13C NMR spectroscopy. Spectral characteristics of cyclic carbonates shown in Table
[2]
are as follows:
4-Methyl-1,3-dioxolan-2-one (6a): 1H NMR (400 MHz, CDCl3): δ = 1.43 (d, J = 6.0 Hz, 3 H, Me), 3.98 (t, J = 8.4 Hz, 1 H, OCH2), 4.51 (t, J = 8.4 Hz, 1 H, OCH2), 4.82 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 19.15, 70.53, 73.49, 154.95. 1,3-Dioxolan-2-one (6b): 1H NMR (400 MHz, CDCl3): δ = 4.50 (s, 4 H, OCH2). 13C NMR (100.4 MHz, CDCl3): δ = 64.62, 155.55. 4-Phenyl-1,3-dioxolan-2-one (6c): 1H NMR (400 MHz, CDCl3): δ = 4.35 (t, J = 8.4 Hz, 1 H, OCH2), 4.80 (t, J = 8.4 Hz, 1 H, OCH2), 5.70 (t, J = 8.0 Hz, 1 H, OCH), 7.36 (d, J = 7.6 Hz, 2 H, Ph), 7.44 (d, J = 6.4 Hz, 3 H, Ph). 13C NMR (100.4 MHz, CDCl3): δ = 71.12, 77.95, 125.83, 129.22, 129.71, 135.78, 154.76.
4-Chloromethyl-1,3-dioxolan-2-one (6d): 1H NMR (400 MHz, CDCl3): δ = 3.71 (dd, J = 3.2, 12.0 Hz, 1 H, ClCH2), 3.80 (dd, J = 5.2, 12.0 Hz, 1 H, ClCH2), 4.39 (dd, J = 6.0, 8.4 Hz, 1 H, OCH2), 4.58 (t, J = 8.4 Hz, 1 H, OCH2), 4.98 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 43.84, 66.83, 74.29, 154.28. 4-Isopropoxy-1,3-dioxolan-2-one (6e): 1H NMR (400 MHz, CDCl3): δ = 1.08 (t, J = 6.4 Hz, 6 H, 2 × Me), 3.51-3.62 (m, 3 H, CHO, CH2O), 4.30 (dd, J = 8.0, 15.6 Hz, 1 H, OCH2), 4.42 (dd, J = 8.0, 15.6 Hz, 1 H, OCH2), 4.74 (m, 1 H, CHO). 13C NMR (100.4 MHz, CDCl3): δ = 21.53, 21.65, 66.16, 66.89, 72.59, 75.18, 155.03.
4-Phenoxymethyl-1,3-dioxolan-2-one (6f): 1H NMR (400 MHz, CDCl3): δ = 4.15 (dd, J = 4.4, 10.8 Hz, 1 H, OCH2), 4.24 (dd, J = 3.6, 10.8 Hz, 1 H, OCH2), 4.55 (dd, J = 6.0, 8.4 Hz, 1 H, PhOCH2), 4.62 (t, J = 8.4 Hz, 1 H, PhOCH2), 5.03 (m, 1 H, OCH), 6.91 (d, J = 8.0 Hz, 2 H, Ph), 7.02 (t, J = 7.4 Hz, 1 H, Ph), 7.31 (t, J = 8.0 Hz, 2 H, Ph). 13C NMR (100.4 MHz, CDCl3): δ = 66.17, 68.84, 74.11, 114.57, 121.92, 129.63, 154.65, 157.71.
<A NAME="RW15207ST-16">16</A>
Extraction Procedure with Et
2
O: After addition of Et2O (3 × 4 mL) to the resulting mixture upon completion of the reaction, the PEG-guanidinium
bromide was solidified when cooled to -20 °C to -10 °C, followed by simple decantation
of the Et2O phase containing the products, thus allowing the catalyst to be recycled. The combined
extracts were dried over MgSO4 and concentrated in vacuo to give the product cyclic carbonate. We conducted further
reaction by the addition of successive portions of the epoxide to the recovered catalyst
under identical reaction conditions.