Rofo 2008; 180(8): 707-714
DOI: 10.1055/s-2008-1027483
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Gegenwärtiger Stand der funktionellen MRT bei Neugeborenen und Kindern im ersten Lebensjahr

Current Stage of fMRI Applications in Newborns and Children during the First Year of LifeH. Boecker1 , L. Scheef1 , J. Jankowski1 , N. Zimmermann1 , M. Born2 , A. Heep3
  • 1Radiologische Universitätsklinik Bonn, FE Klinische Funktionelle Neurobildgebung
  • 2Radiologische Universitätsklinik Bonn, FE Kinderradiologie
  • 3Zentrum für Kinderheilkunde der Universität Bonn, Abteilung für Neonatologie
Further Information

Publication History

eingereicht: 13.2.2008

angenommen: 24.4.2008

Publication Date:
18 July 2008 (online)

Zusammenfassung

Die Neonatologie erlebt gegenwärtig einen Paradigmen-Shift hin zu einem vermehrten frühen diagnostischen Einsatz der MRT-Bildgebung bei Risiko-Neugeborenen und Kindern im ersten Lebensjahr. Neben der gezielten Anwendung hochauflösender MRT-Bildgebung in klinischer Indikation werden in zunehmendem Maße funktionelle MRT-(fMRT-)Untersuchungen bei Kindern im ersten Lebensjahr durchgeführt. Einerseits erlaubt die fMRT, funktionelle Entwicklungsprozesse des Gehirns in Abhängigkeit des Maturationsstadiums abzubilden, andererseits besteht die Hoffnung, pathophysiologische Prozesse im Gehirn zu einem möglichst frühen Zeitpunkt zu detektieren und damit die Grundlage für eine frühzeitige und gezielte therapeutische Intervention zu schaffen. Diese Übersichtsarbeit bietet einen Überblick über bisherige Anwendungen der fMRT bei Neugeborenen und Kindern im ersten Lebensjahr und thematisiert die hiermit assoziierten methodischen Aspekte (u. a. Signalphysiologie, Sicherheitsaspekte, Sedierung).

Abstract

Currently, a paradigm shift towards expanded early use of cranial MRI in newborns at risk and infants in the first year of life can be observed in neonatology. Beyond clinical MRI applications, there is progressive use of functional MRI (fMRI) in this age group. On the one hand, fMRI allows monitoring of functional developmental processes depending on maturational stage; on the other hand, this technique may provide the basis for early detection of pathophysiological processes as a prerequisite for functionally guided therapeutic interventions. This article provides a comprehensive review of current fMRI applications in neonates and infants during the first year of life and focuses on the associated methodological issues (e. g. signal physiology, sedation, safety aspects).

Literatur

  • 1 Bangert B A. Magnetic resonance techniques in the evaluation of the fetal and neonatal brain.  Semin Pediatr Neurol. 2001;  8 74-88
  • 2 Baarsma R, Laurini R N, Baerts W. et al . Reliability of sonography in non-hemorrhagic periventricular leucomalacia.  Pediatr Radiol. 1987;  17 189-191
  • 3 Dammann O, Leviton A. Neuroimaging and the prediction of outcomes in preterm infants.  N Engl J Med. 2006;  355 727-729
  • 4 Woodward L J, Anderson P J, Austin N C. et al . Neonatal MRI to predict neurodevelopmental outcomes in preterm infants.  N Engl J Med. 2006;  355 685-694
  • 5 Nanba Y, Matsui K, Aida N. et al . Magnetic resonance imaging regional T 1 abnormalities at term accurately predict motor outcome in preterm infants.  Pediatrics. 2007;  120 e10-e19
  • 6 Thompson D K, Warfield S K, Carlin J B. et al . Perinatal risk factors altering regional brain structure in the preterm infant.  Brain. 2007;  130 667-677
  • 7 Srinivasan L, Allsop J, Counsell S J. et al . Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions.  Am J Neuroradiol. 2006;  27 573-579
  • 8 Srinivasan L, Dutta R, Counsell S J. et al . Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images.  Pediatrics. 2007;  119 759-765
  • 9 Boardman J P, Counsell S J, Rueckert D. et al . Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry.  Neuroimage. 2006;  32 70-78
  • 10 Palmer F B. Strategies for the early diagnosis of cerebral palsy.  J Pediatr. 2004;  145 S8-S11
  • 11 Moller F, Ulmer S, Wolff S. et al . Kortikale Reorganisation bei Kindern mit konnataler spastischer Hemiparese – eine funktionelle Magnetresonanztomographie-(fMRT-)Studie.  Fortschr Röntgenstr. 2005;  177 1552-1561
  • 12 Scheef L, Landsberg M W, Boecker H. Methodische Aspekte der funktionellen Neurobildgebung im MRT-Hochfeldbereich: eine kritische Übersicht.  Fortschr Röntgenstr. 2007;  179 925-931
  • 13 Blondin D, Turowski B, Schaper J. Fetal MRT.  Fortschr Röntgenstr. 2007;  179 111-118
  • 14 Adamietz B, Cavallaro A, Radkow T. et al . Untersuchungstoleranz von Kindern und Adoleszenten in einem 1,5 Tesla MR-Tomografen mit offenem Magnetdesign.  Fortschr Röntgenstr. 2007;  179 826-831
  • 15 Trasimeni G, Di Biasi C, Pirolli C. et al . The basic concepts of the use of magnetic resonance in neuropediatrics.  Clin Ter. 1996;  147 259-266
  • 16 Rutherford M, Ward P, Allsop J. et al . Magnetic resonance imaging in neonatal encephalopathy.  Early Hum Dev. 2005;  81 13-25
  • 17 Holden K R, Titus M O, Van Tassel P. Cranial magnetic resonance imaging examination of normal term neonates: a pilot study.  J Child Neurol. 1999;  14 708-710
  • 18 Almli C R, Rivkin M J, McKinstry R C. The NIH MRI study of normal brain development (Objective-2): newborns, infants, toddlers, and preschoolers.  Neuroimage. 2007;  35 308-325
  • 19 Looney C B, Smith J K, Merck L H. et al . Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors.  Radiology. 2007;  242 535-541
  • 20 Whitby E H, Griffiths P D, Lonneker-Lammers T. et al . Ultrafast magnetic resonance imaging of the neonate in a magnetic resonance-compatible incubator with a built-in coil.  Pediatrics. 2004;  113 e150-e152
  • 21 Bartha A I, Yap K R, Miller S P. et al . The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy in healthy term neonates.  AJNR Am J Neuroradiol. 2007;  28 1015-1021
  • 22 Chateil J F, Quesson B, Brun M. et al . Localised proton magnetic resonance spectroscopy of the brain after perinatal hypoxia: a preliminary report.  Pediatr Radiol. 1999;  29 199-205
  • 23 Martin E, Boesch C, Grutter R. et al . Magnetic resonance in pediatric research and clinical practice. II. Studies on the development and pathology of the brain in neonates, infants and young children.  Helv Paediatr Acta. 1988;  43 75-86
  • 24 Liu G T, Hunter J, Miki A. et al . Functional MRI in children with congenital structural abnormalities of the occipital cortex.  Neuropediatrics. 2000;  31 13-15
  • 25 Redcay E, Kennedy D P, Courchesne E. fMRI during natural sleep as a method to study brain function during early childhood.  Neuroimage. 2007;  38 696-707
  • 26 Sie L TL, Rombouts S A, Valk I J. et al . Functional MRI of visual cortex in sedated 18 month-old infants with or without periventricular leukomalacia.  Dev Med Child Neurol. 2001;  43 486-490
  • 27 Miki A, Liu G T, Fletcher D W. et al . Ocular dominance in anterior visual cortex in a child demonstrated by the use of fMRI.  Pediatr Neurol. 2001;  24 232-234
  • 28 Patel A M, Cahill L D, Ret J. et al . Functional magnetic resonance imaging of hearing-impaired children under sedation before cochlear implantation.  Arch Otolaryngol Head Neck Surg. 2007;  133 677-683
  • 29 Carmody D P, Moreno R, Mars A E. et al . Brief report: brain activation to social words in a sedated child with autism.  J Autism Dev Disord. 2007;  37 1381-1385
  • 30 Marcar V L, Schwarz U, Martin E. et al . How depth of anesthesia influences the blood oxygenation level-dependent signal from the visual cortex of children.  Am J Neuroradiol. 2006;  27 799-805
  • 31 Bernal B, Altman N R. Speech delay in children: a functional MR imaging study.  Radiology. 2003;  229 651-658
  • 32 Souweidane M M, Kim K H, McDowall R. et al . Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging.  Pediatr Neurosurg. 1999;  30 86-92
  • 33 Altman N R, Bernal B. Brain activation in sedated children: auditory and visual functional MR imaging.  Radiology. 2001;  221 56-63
  • 34 Born A P, Rostrup E, Miranda M J. et al . Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR).  Magn Reson Imaging. 2002;  20 199-205
  • 35 Konishi Y, Taga G, Yamada H. et al . Functional brain imaging using fMRI and optical topography in infancy.  Sleep Med. 2002;  3 Suppl 2 S41-S43
  • 36 Seghier M L, Lazeyras F, Zimine S. et al . Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke.  Neuroimage. 2004;  21 463-472
  • 37 Born P, Leth H, Miranda M J. et al . Visual activation in infants and young children studied by functional magnetic resonance imaging.  Pediatr Res. 1998;  44 578-583
  • 38 Rivkin M J, Wolraich D, Als H. et al . Prolonged T*2 values in newborn versus adult brain: Implications for fMRI studies of newborns.  Magn Reson Med. 2004;  51 1287-1291
  • 39 Anderson A W, Marois R, Colson E R. et al . Neonatal auditory activation detected by functional magnetic resonance imaging.  Magn Reson Imaging. 2001;  19 1-5
  • 40 Cormio M, Gopinath S P, Valadka A. et al . Cerebral hemodynamic effects of pentobarbital coma in head-injured patients.  J Neurotrauma. 1999;  16 927-936
  • 41 Lindauer U, Villringer A, Dirnagl U. Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics.  Am J Physiol. 1993;  264 H1223-H1228
  • 42 Greenberg S B, Faerber E N, Aspinall C L. et al . High-dose chloral hydrate sedation for children undergoing MR imaging: safety and efficacy in relation to age.  Am J Roentgenol. 1993;  161 639-641
  • 43 Ueki M, Mies G, Hossmann K A. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat.  Acta Anaesthesiol Scand. 1992;  36 318-322
  • 44 Erberich S G, Panigrahy A, Friedlich P. et al . Somatosensory lateralization in the newborn brain.  Neuroimage. 2006;  29 155-161
  • 45 Heep A, Scheef L, Jankowski J. et al . Functional MR Imaging of the sensorimotor system in preterm infants.  Pediatrics. 2008, in press; 
  • 46 Kiviniemi V J, Haanpaa H, Kantola J H. et al . Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal.  Magn Reson Imaging. 2005;  23 531-537
  • 47 Van Bel F, Zeeuwe P E, Dorrepaal C A. et al . Changes in cerebral hemodynamics and oxygenation during hypothermic cardiopulmonary bypass in neonates and infants.  Biol Neonate. 1996;  70 141-154
  • 48 O’Hare B, Bissonnette B, Bohn D. et al . Persistent low cerebral blood flow velocity following profound hypothermic circulatory arrest in infants.  Can J Anaesth. 1995;  42 964-971
  • 49 Wardle S P, Yoxall C W, Weindling A M. Cerebral oxygenation during cardiopulmonary bypass.  Arch Dis Child. 1998;  78 26-32
  • 50 Bluml S, Friedlich P, Erberich S. et al . MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency coils: initial experience.  Radiology. 2004;  231 594-601
  • 51 Erberich S G, Friedlich P, Seri I. et al . Functional MRI in neonates using neonatal head coil and MR compatible incubator.  Neuroimage. 2003;  20 683-692
  • 52 Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L. Functional neuroimaging of speech perception in infants.  Science. 2002;  298 2013-2015
  • 53 Dehaene-Lambertz G, Hertz-Pannier L, Dubois J. Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants.  Trends Neurosci. 2006;  29 367-373
  • 54 Dehaene-Lambertz G, Hertz-Pannier L, Dubois J. et al . Functional organization of perisylvian activation during presentation of sentences in preverbal infants.  Proc Natl Acad Sci U S A. 2006;  103 14 240-14 245
  • 55 Born A P, Miranda M J, Rostrup E. et al . Functional magnetic resonance imaging of the normal and abnormal visual system in early life.  Neuropediatrics. 2000;  31 24-32
  • 56 Muramoto S, Yamada H, Sadato N. et al . Age-dependent change in metabolic response to photic stimulation of the primary visual cortex in infants: functional magnetic resonance imaging study.  J Comput Assist Tomogr. 2002;  26 894-901
  • 57 Yamada H, Sadato N, Konishi Y. et al . A milestone for normal development of the infantile brain detected by functional MRI.  Neurology. 2000;  55 218-223
  • 58 Yamada H, Sadato N, Konishi Y. et al . A rapid brain metabolic change in infants detected by fMRI.  Neuroreport. 1997;  8 3775-3778
  • 59 Morita T, Kochiyama T, Yamada H. et al . Difference in the metabolic response to photic stimulation of the lateral geniculate nucleus and the primary visual cortex of infants: a fMRI study.  Neurosci Res. 2000;  38 63-70
  • 60 Huttenlocher P R, Courten de C. The development of synapses in striate cortex of man.  Hum Neurobiol. 1987;  6 1-9
  • 61 Huttenlocher P R, Courten de C, Garey L J. et al . Synaptogenesis in human visual cortex–evidence for synapse elimination during normal development.  Neurosci Lett. 1982;  33 247-252
  • 62 Chugani H T, Phelps M E. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography.  Science. 1986;  231 840-843
  • 63 Huppi P S, Warfield S, Kikinis R. et al . Quantitative magnetic resonance imaging of brain development in premature and mature newborns.  Ann Neurol. 1998;  43 224-235
  • 64 Giedd J N, Snell J W, Lange N. et al . Quantitative magnetic resonance imaging of human brain development: ages 4 – 18.  Cereb Cortex. 1996;  6 551-560
  • 65 Giedd J N, Vaituzis A C, Hamburger S D. et al . Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4 – 18 years.  J Comp Neurol. 1996;  366 223-230
  • 66 Matsuzawa J, Matsui M, Konishi T. et al . Age-related volumetric changes of brain gray and white matter in healthy infants and children.  Cereb Cortex. 2001;  11 335-342
  • 67 Evans A C. The NIH MRI study of normal brain development.  Neuroimage. 2006;  30 184-202
  • 68 Durston S, Hulshoff Pol H E, Casey B J. et al . Anatomical MRI of the developing human brain: what have we learned?.  J Am Acad Child Adolesc Psychiatry. 2001;  40 1012-1020
  • 69 Nishida M, Makris N, Kennedy D N. et al . Detailed semiautomated MRI based morphometry of the neonatal brain: preliminary results.  Neuroimage. 2006;  32 1041-1049
  • 70 Gaillard W D, Grandin C B, Xu B. Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation.  Neuroimage. 2001;  13 239-249
  • 71 Aljabar P, Bhatia K K, Murgasova M. et al . Assessment of brain growth in early childhood using deformation-based morphometry.  Neuroimage. 2008;  39 348-358
  • 72 Muzik O, Chugani D C, Juhasz C. et al . Statistical parametric mapping: assessment of application in children.  Neuroimage. 2000;  12 538-549
  • 73 Burgund E D, Kang H C, Kelly J E. et al . The feasibility of a common stereotactic space for children and adults in fMRI studies of development.  Neuroimage. 2002;  17 184-200
  • 74 Wilke M, Schmithorst V J, Holland S K. Assessment of spatial normalization of whole-brain magnetic resonance images in children.  Hum Brain Mapp. 2002;  17 48-60
  • 75 Wilke M, Schmithorst V J, Holland S K. Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data.  Magn Reson Med. 2003;  50 749-757
  • 76 Prastawa M, Gilmore J H, Lin W. et al . Automatic segmentation of MR images of the developing newborn brain.  Med Image Anal. 2005;  9 457-466
  • 77 Kazemi K, Moghaddam H A, Grebe R. et al . A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results.  Neuroimage. 2007;  37 463-473
  • 78 Seghier M L, Lazeyras F, Zimine S. et al . Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report.  BMC Neurol. 2005;  5 17
  • 79 Pujol J, Soriano-Mas C, Ortiz H. et al . Myelination of language-related areas in the developing brain.  Neurology. 2006;  66 339-343

Prof. Henning Boecker

Radiologische Universitätsklinik Bonn, FE Klinische Funktionelle Neurobildgebung

Sigmund-Freud-Str. 25

53105 Bonn

Phone: ++ 49/2 28/28 71 59 70

Fax: ++ 49/2 28/28 71 44 57

Email: Henning.Boecker@ukb.uni-bonn.de

    >