Aktuelle Neurologie 2008; 35(8): 382-388
DOI: 10.1055/s-2008-1067561
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Was bringt der 3-Tesla-MRT mehr?

What is the Benefit of 3-Tesla MRI?M.  Tietke1 , O.  Jansen1
  • 1UKSH Campus Kiel, Institut für Neuroradiologie
Further Information

Publication History

Publication Date:
01 October 2008 (online)

Zusammenfassung

Die technische Weiterentwicklung der ersten klinischen Magnetresonanztomografen seit den 80er-Jahren von 0,35 Tesla zu den aktuellen Hochfeldgeräten von über 9 Tesla Feldstärke hat viele neue diagnostische Arbeitsfelder eröffnet. Die derzeit am weitesten in Deutschland verbreiteten 1,5-Tesla-Scanner werden seit dem Jahre 2000 zunehmend von 3-Tesla-Scannern ergänzt oder teilweise ersetzt. Diese 3-Tesla-Scanner finden ihre Verbreitung mittlerweile auch außerhalb spezialisierter neuroradiologischer Zentren in große und mittelgroße Kliniken oder spezialisierte Praxen. 3-Tesla-Scanner weisen im Vergleich zu 1,5-Tesla-Scannern überwiegend Vor-, aber auch einige Nachteile in der täglichen Routine auf. Diese sollen im Folgenden genauer betrachtet und ihre Auswirkungen auf die Diagnostik eingeordnet werden. Unabhängig vom Zugewinn diagnostischer Qualität zeigen sich Besonderheiten in der Bildgebung des Neurocraniums mit 3-Tesla-Geräten, die bei der Beurteilung so gewonnener Bilder berücksichtigt werden müssen.

Abstract

Technical developments since introduction of the first clinical 0.35-Tesla magnetic resonance tomographs in the 1980 s to the current systems with field strengths of more than 9 Tesla have opened up many new fields in diagnostics. The currently most common 1.5-Tesla scanners in Germany are being more and more supplemented or substituted by 3-Tesla systems. These 3-Tesla scanners can now be found outside of specialist neuroradiological centres in large and medium-sized clinics and in specialist practices. In comparison to 1.5-Tesla scanners, the 3-Tesla systems have predominately advantages but also some disadvantages in daily routine use. These will be considered in more detail in the present article and their impact in diagnostics assessed. Independent of the gains in diagnostic quality, imaging of the neurocranium with 3-Tesla systems shows some special features that have to be taken into account when evaluating the images from such systems.

Literatur

  • 1 Hoult D I, Lauterbur P C. The sensitivity of the zeugmatographic experiment involving human samples.  J Magn Reson. 1979;  34 425-433
  • 2 Bammer R, Hope T A, Aksoy M. et al . MT Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging.  Magn Reson Med. 2007;  57 127-140
  • 3 Yarnykh V L, Terashima M, Hayes C E. et al . Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths.  J Magn Reson Imaging. 2006;  23 691-698
  • 4 Bachmann R, Nassenstein I, Kooijman H. et al . High-resolution magnetic resonance imaging (MRI) at 3.0 Tesla in the short-term follow-up of patients with proven cervical artery dissection.  Invest Radiol. 2007;  42 460-466
  • 5 Lee V H, Brown Jr R D, Mandrekar J N. et al . Incidence and outcome of cervical artery dissection: a population-based study.  Neurology. 2006;  67 1809-1812
  • 6 Labropoulos N, Leon Jr L R, Gonzalez-Fajardo J A. et al . Nonatherosclerotic pathology of the neck vessels: prevalence and flow patterns.  Vasc Endovascular Surg. 2007;  41 417-427
  • 7 Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting.  Brain. 2007;  130 1988-2003 , Epub 2007 Feb 24
  • 8 Vernooij M W, van der Lugt A, Ikram M A. et al . Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study.  Neurology. 2008;  70 1208-1214
  • 9 Ogawa S, Lee T M, Nayak A S. et al . Oxygenationsensitive contrast in magnetic resonance image of rodent brain at high magnetic fields.  Magn Reson Med. 1990;  14 68-78
  • 10 Turner R, Le Bihan D, Moonen C T. et al . Echo-planar time course MRI of cat brain oxygenation changes.  Magn Reson Med. 1991;  22 159-166
  • 11 Kwong K K, Belliveau J W, Chesler D A. et al . Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.  Proc Natl Acad Sci U. S. A.. 1992;  89 5675-5679
  • 12 Gati J S, Menon R S, Ugurbil K. et al . Experimental determination of the BOLD field strength dependence in vessels and tissue.  Magn Res Med. 1997;  38 296-302
  • 13 Van Westen D, Skagerberg G, Olsrud J. et al . Functional magnetic resonance imaging at 3T as a clinical tool in patients with intracranial tumors.  Acta Radiol. 2005;  46 599-609
  • 14 Manka C, Träber F, Gieseke J. et al . Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose.  Radiology. 2005;  234 869-877 , Epub 2005 Jan 21
  • 15 Rabinov J D, Lee P L, Barker F G. et al . In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiationeffects: initial experience.  Radiology. 2002;  225 871-879
  • 16 Bonavita S, Di Salle F, Tedeschi G. Proton MRS in neurological disorders.  Eur J Radiol. 1999;  30 125-131
  • 17 Del Sole A, Gambini A, Falini A. et al . In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications.  Eur Radiol. 2002;  12 2582-2599
  • 18 Lin A, Ross B D, Harris K. et al . Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making.  NeuroRx. 2005;  2 197-214
  • 19 Xu D, Chen A P, Cunningham C. et al . Spectroscopic imaging of brain with phased-array coils at 3.0.  Magn Reson Imaging. 2006;  24 69-74
  • 20 Gonen O, Gruber S, Li B SY. et al . Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison.  Am J Neuroradiol. 2001;  22 1727-1731
  • 21 Bartha R, Drost D J, Menon R S. et al . Comparison of the quantification precision of human short echo time (1)H spectroscopy at 1.5 and 4.0 Tesla.  Magn Reson Med. 2000;  44 185-192
  • 22 Law M, Cha S, Knopp E A. et al .Glioma grading with multi-slice, multi-voxel, multi-TE spectroscopic MRI and multi-slice perfusion MRI. In: Proceedings of the International Scientific Meeting of the International Society for Magnetic Resonance in Medicine, May 18–24, 2002, Honolulu. 2002: 308
  • 23 Schwindt W, Kugel H, Bachmann R. et al . Magnetic resonance imaging protocols for examination of the neurocranium at 3 T.  Eur Radiol. 2003;  13 2170-2179
  • 24 Runge V M, Patel M C, Baumann S S. et al . T1-weighted imaging of the brain at 3 tesla using a 2-dimensional spoiled gradient echo technique.  Invest Radiol. 2006;  41 68-75
  • 25 Trattnig S, Ba-Ssalamah A, Nöbauer-Huhmann I M. et al . MR contrast agent at high-field MRI (3 Tesla).  Top Magn Reson Imaging. 2003;  14 365-375
  • 26 Nobauer-Huhmann I M, Ba-Ssalamah A, Mlynarik V. et al . Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla.  Invest Radiol. 2002;  37 114 -119
  • 27 Sasaki M, Shibata E, Kanbara Y. et al . Enhancement effects and relaxivities of gadolinium-DTPA at 1.5 versus 3 Tesla: a phantom study.  Magn Reson Med Sci. 2005;  4 145-149
  • 28 Sicotte N L, Voskuhl R R, Bouvier S. et al . Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla.  Invest Radiol. 2003;  38 423-427
  • 29 AL-Kwifi O, Emery D J, Wilman A H. Vessel contrast at 3 Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries.  J Magn Reson Imaging. 2002;  20 181-187
  • 30 Gibbs G F, Huston III J, Bernstein M A. et al . Improved image quality of intracranial aneurysms: 3T versus 1.5-T time-of-flight MR angiography.  AJNR Am J Neuroradiol. 2004;  25 84-87
  • 31 Majoie C BLM, Sprengers M E, van Rooij W JJ. et al . MR Angiography at 3T versus Digital Subtraction Angiography in the Follow-up of Intracranial Aneurysms Treated with Detachable Coils.  AJNR Am J Neuroradiol. 2005;  26 1349-1356
  • 32 Pruessmann K P, Weiger M, Scheidegger M B. et al . SENSE: sensitivity encoding for fast MRI.  Magn Reson Med. 1999;  42 952-962
  • 33 Kuhl C K, Gieseke J, von Falkenhausen M. et al . Sensitivity encoding for diffusion-weighted MR imaging at 3.0 T: intraindividual comparative study.  Radiology. 2005;  234 517-526
  • 34 Preibisch C, Pilatus U, Bunke J. et al . Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI).  Neuroimage. 2003;  19 412-421
  • 35 Wang J, Qiu M, Yang Q X. et al . Measurement and correction of transmitter and receiver induced nonuniformities in vivo.  Magn Reson Med. 2005;  53 408-417
  • 36 Saekho S, Yip C Y, Noll D C. et al . Fast-kz threedimensional tailored radiofrequency pulse for reduced B1 inhomogeneity.  Magn Reson Med. 2006;  55 719-724
  • 37 Merkle E M, Dale B M. Abdominal MRI at 3.0 T: the basics revisited.  AJR Am J Roentgenol. 2006;  186 1524-1532
  • 38 Lufkin R, Anselmo M, Crues J. et al . Magnetic field strength dependence of chemical shift artifacts.  Comput Med Imaging Graph. 1988;  12 89-96
  • 39 Smith A S, Weinstein M A, Hurst G C. et al . Intracranial chemical-shift artifacts on MR images of the brain: observations and relation to sampling bandwidth.  AJR Am J Roentgenol. 1990;  154 1275-1283
  • 40 Shellock F G. Biomedical implants and devices: assessment of magnetic field interactions with a 3.0-Tesla MR system.  J Magn Reson Imaging. 2002;  16 721-732
  • 41 Fujii S, Matsusue E, Kinoshita T. et al . Hyperintense putaminal rim at 3 T reflects fewer ferritin deposits in the lateral marginal area of the putamen.  AJNR Am J Neuroradiol. 2007;  28 777-781

Dr. Marc Tietke

UKSH Campus Kiel, Institut für Neuroradiologie

Schittenhelmstraße 10

24105 Kiel

Email: m.tietke@neurorad.uni-kiel.de

    >