Synlett 2008(11): 1737-1741  
DOI: 10.1055/s-2008-1077885
LETTER
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of Amphidinolide X and Its 12Z-Isomer by Formation of the C12-C13 Trisubstituted Double Bond via Ring-Closing Metathesis

Wei-Min Dai*a,b, Yile Chena, Jian Jina, Jinlong Wu*a, Jianshu Louc, Qiaojun Hec
a Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
Fax: +86(571)87953128; e-Mail: [email protected];
b Center for Cancer Research and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. of China
c Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Zi-Jin-Gang Campus, Hangzhou 310058, P. R. of China
Further Information

Publication History

Received 27 March 2008
Publication Date:
11 June 2008 (online)

Abstract

Amphidinolide X, a 16-membered cytotoxic macro­diolide, and its 12Z-isomer have been synthesized via ring-closing metathesis (RCM) for assembling the C12-C13 trisubstituted double bond. A 29:71 E/Z mixture was obtained from the seco substrate appended with a bulky C8-ODPS group in 50-65% combined yields by using 20 mol% of the second-generation Grubbs initiator and the corresponding indenylidene ruthenium complex. Amphidinolide X and 12Z-isomer exhibit similar cytotoxicity (IC50: 7.6-13.9 µg/mL) against A549, KB, and HL60 cell lines.

    References and Notes

  • 1 Tsuda M. Izui N. Shimbo K. Sato M. Fukushi E. Kawabata J. Katsumata K. Horiguchi T. Kobayashi J.
    J. Org. Chem.  2003,  68:  5339 
  • 2a Kobayashi J. Tsuda M. Nat. Prod. Rep.  2004,  21:  77 
  • 2b Kobayashi J. Kubata M. J. Nat. Prod.  2007,  70:  451 
  • 3 Tsuda M. Izui N. Shimbo K. Sato M. Fukushi E. Kawabata J. Kobayashi J. J. Org. Chem.  2003,  68:  9109 
  • For the first total syntheses of amphidinolide X and Y, see:
  • 4a Lepage O. Kattnig E. Fürstner A. J. Am. Chem. Soc.  2004,  126:  15970 
  • 4b Fürstner A. Kattnig E. Lepage O. J. Am. Chem. Soc.  2006,  128:  9194 
  • 5 For a review, see: Parenty A. Moreau X. Campagne J.-M. Chem. Rev.  2006,  106:  911 
  • For reviews, see:
  • 6a Grubbs RH. Chang S. Tetrahedron  1998,  54:  4413 
  • 6b Fürstner A. Angew. Chem. Int. Ed.  2000,  39:  3012 
  • 6c Trnka TM. Grubbs RH. Acc. Chem. Res.  2001,  34:  18 
  • 6d Schrock RR. Hoveyda AH. Angew. Chem. Int. Ed.  2003,  42:  4592 
  • 6e Deiters A. Martin SF. Chem. Rev.  2004,  104:  2199 
  • 6f Grubbs RH. Tetrahedron  2004,  60:  7117 
  • 6g Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4490 
  • 6h Gradillas A. Pérez-Castells J. Angew. Chem. Int. Ed.  2006,  45:  6086 
  • 6i Schrodi Y. Pederson RL. Aldrichimica Acta  2007,  40:  45 
  • 6j Hoveyda AH. Zhugralin AR. Nature (London)  2007,  450:  243 
  • 6k See also: Handbook of Metathesis   Vol. 1-3:  Grubbs RH. Wiley-VCH; Weinheim: 2003. 
  • 7 For the second total synthesis of amphidinolide Y, see: Jin J. Chen Y. Li Y. Wu J. Dai W.-M. Org. Lett.  2007,  9:  2585 
  • For Ru-mediated RCM to macrocyclic trisubstituted E-alkenes, see:
  • 8a Fürstner A. Thiel OR. Ackermann L. Org. Lett.  2001,  3:  449 
  • 8b Nicolaou KC. Vassilikogiannakis G. Montagnon T. Angew. Chem. Int. Ed.  2002,  41:  3276 
  • 8c Nicolaou KC. Montagnon T. Vassilikogiannakis G. Mathison CJN. J. Am. Chem. Soc.  2005,  127:  8872 
  • 8d Ichige T. Kamimura S. Mayumi K. Sakamoto Y. Terashita S. Ohteki E. Kanoh N. Nakata M. Tetrahedron Lett.  2005,  46:  1263 
  • 8e Alexander MD. Fontaine SD. La Clair JJ. DiPasquale AG. Rheingold AL. Burkart MD. Chem. Commun.  2006,  4602 
  • 8f Trost BM. Dong G. Vance JA. J. Am. Chem. Soc.  2007,  129:  4540 
  • 8g Feyen F. Jantsch A. Altmann K.-H. Synlett  2007,  415 
  • 8h For Ru-mediated RCM to macrocyclic trisubstituted Z-alkenes or E/Z mixtures, see: Vassilikogiannakis G. Margaros I. Tofi M. Org. Lett.  2004,  6:  205 
  • 8i Nicolaou KC. Xu H. Chem. Commun.  2006,  600 
  • 8j Park PK. O’Malley SJ. Schmidt DR. Leighton JL. J. Am. Chem. Soc.  2006,  128:  2796 
  • 8k Smith AB. Mesaros EF. Meyer EA. J. Am. Chem. Soc.  2006,  128:  5292 
  • 8l Larrosa I. Da Silva MI. Gómez PM. Hannen P. Ko E. Lenger SR. Linke SR. White AJP. Wilton D. Barrett AGM. J. Am. Chem. Soc.  2006,  128:  14042 
  • 8m Alhamadsheh MM. Gupta S. Hudson RA. Perera L. Tillekeratne LMV. Chem. Eur. J.  2008,  14:  570 
  • 8n For Mo-mediated RCM to macrocyclic trisubstituted Z-alkenes or E/Z mixtures, see: Xu Z. Johannes CW. Houri AF. La DS. Cogan DA. Hofilena GE. Hoveyda AH. J. Am. Chem. Soc.  1997,  119:  10302 ; and references cited therein
  • 8o May SA. Grieco PA. Chem. Commun.  1998,  1597 
  • 8p Content S. Dutton CJ. Roberts L. Bioorg. Med. Chem. Lett.  2003,  13:  321 
  • 9a Chen Y. Jin J. Wu J. Dai W.-M. Synlett  2006,  1177 
  • 9b For an alternative synthesis, see: Rodríguez-Escrich C. Olivella A. Urpí F. Vilarrasa J. Org. Lett.  2007,  9:  989 
  • 10a Brown HC. Bhat K. J. Am. Chem. Soc.  1986,  108:  293 
  • 10b Roush WR. Halterman RL. J. Am. Chem. Soc.  1986,  108:  294 
  • 10c Roush WR. Ando K. Powers DB. Palkowitz AD. Halterman RL. J. Am. Chem. Soc.  1990,  112:  6339 
  • 10d Benowitz AB. Fidanze S. Small PLC. Kishi Y. J. Am. Chem. Soc.  2001,  123:  5128 
  • 11 Hackman BM. Lombardi PJ. Leighton JL. Org. Lett.  2004,  6:  4375 
  • 12 Garbaccio RM. Stachel SJ. Baeschlin DK. Danishefsky SJ. J. Am. Chem. Soc.  2001,  123:  10903 
  • 14a Heckrodt TJ. Mulzer J. Synthesis  2002,  1857 
  • 14b Bailey WF. Punzalan ER. J. Org. Chem.  1990,  55:  5404 
  • 15 Inanaga J. Hirata K. Saeki H. Katsuki T. Yamaguchi M. Bull. Chem. Soc. Jpn.  1979,  52:  1989 
  • 16a McMurry JE. Wong GB. Synth. Commun.  1972,  2:  389 ; and references cited therein
  • 16b For microwave-assisted cleavage of aromatic methyl esters, see: Sheppard GS. Wang J. Kawai M. Fidanze SD. BaMaung NY. Erickson SA. Barnes DM. Tedrow JS. Kolaczkowski L. Vasudevan A. Park DC. Wang GT. Sanders WJ. Mantei RA. Palazzo F. Tucker-Garcia L. Lou P. Zhang Q. Park CH. Kim KH. Petros A. Olejniczak E. Nettesheim D. Hajduk P. Henkin J. Lesniewski R. Davidsen SK. Bell RL. J. Med. Chem.  2006,  49:  3832 
  • 17a Fürstner A. Langemann K. J. Am. Chem. Soc.  1997,  119:  9130 
  • 17b Nevalainen M. Koskinen AMP. Angew. Chem. Int. Ed.  2001,  40:  4060 
  • 18a Jafarpour L. Schanz H.-J. Stevens ED. Nolan SP. Organometallics  1999,  18:  5416 
  • 18b Fürstner A. Hill AF. Liebl M. Wilton-Ely JDET. Chem. Commun.  1999,  601 
  • 18c For use of an analogous indenylidene ruthenium complex of 24 in the synthesis of the ADE-ring system of Nakadomarin A, see: Fürstner A. Guth O. Düffels A. Seidel G. Liebl M. Gabor B. Mynott R. Chem. Eur. J.  2001,  7:  4811 
  • 18d For recent studies on comprehensive comparison of RCM initiators, see: Clavier H. Nolan SP. Chem Eur. J.  2007,  13:  8029 
  • 18e Bieniek M. Michrowska A. Usanov DL. Grela K. Chem. Eur. J.  2008,  14:  806 
  • Remote control of alkene geometry by endocyclic groups in ring-closing metathesis has been reported. For examples of formation of disubstituted macrocyclic alkenes, see:
  • 21a Meng D. Su D.-S. Balog A. Bertinato P. Sorensen EJ. Danishefsky SJ. Zheng Y.-H. Chou T.-C. He L. Horwitz SB. J. Am. Chem. Soc.  1997,  119:  2733 
  • 21b Fürstner A. Thiel OR. Blanda G. Org. Lett.  2000,  2:  3731 
  • 21c Fürstner A. Dierkes T. Thiel OR. Blanda G. Chem. Eur. J.  2001,  7:  5286 
  • 21d Aïssa C. Riveiros R. Ragot J. Fürstner A. J. Am. Chem. Soc.  2003,  125:  15512 
  • 21e Couladouros EA. Mihou AP. Bouzas EA. Org. Lett.  2004,  6:  977 
  • 21f Castoldi D. Caggiano L. Panigada L. Sharon O. Costa AM. Gennari C. Angew. Chem. Int. Ed.  2005,  44:  588 
  • 21g Matsumura T. Akiba M. Arai S. Nakagawa M. Nishida A. Tetrahedron Lett.  2007,  48:  1265 
  • 21h Mohapatra DK. Ramesh DK. Giardello MA. Chorghade MS. Gurjara MK. Grubbs RH. Tetrahedron Lett.  2007,  48:  2621 
  • 21i For examples of formation of trisubstituted macrocyclic alkenes, see: Meng D. Bertinato P. Balog A. Su D.-S. Kamenecka T. Sorensen EJ. Danishefsky SJ. J. Am. Chem. Soc.  1997,  119:  10073 
  • 21j Nicolaou KC. Vassilikogiannakis G. Montagnon T. Angew. Chem. Int. Ed.  2002,  41:  3276 
  • 21k Nicolaou KC. Montagnon T. Vassilikogiannakis G. Mathison CJN. J. Am. Chem. Soc.  2005,  127:  8872 
  • 21l Vassilikogiannakis G. Margaros I. Tofi M. Org. Lett.  2004,  6:  205 
  • 21m Alhamadsheh MM. Gupta S. Hudson RA. Perera L. Tillekeratne LMV. Chem. Eur. J.  2008,  14:  570 
  • 21n Trost BM. Dong G. Vance JA. J. Am. Chem. Soc.  2007,  129:  4540 
  • 21o Ramírez-Fernández J. Collado IG. Hernández-Galán R. Synlett  2008,  339 ; see also ref. 7
13

We used noncrystallized form of the reagent. An 85:15 mixture of (S,S)-9 and its Z-isomer was prepared from an 85:15 mixture of E- and Z-crotyl chloride obtained from Aldrich according to the literature procedure (ref. 11). The Z-isomer of (S,S)-9 reacted with (R)-8 to produce a syn-homoallyl alcohol which is different from 3′. The diaste-
reomeric ratio of >99:1 was estimated according to the 1H NMR spectrum of the product mixture.

19

Procedure for Synthesis of (12 Z )-Amphidinolide X via Ring-Closing Metathesis of the seco Ketone 19 Using Second-Generation Grubbs Initiator 23 To a degassed, refluxing solution of the seco ketone 19 (30.0 mg, 6.3×10-2 mmol) in anhyd CH2Cl2 (100 mL) under a nitrogen atmosphere was added the second-generation Grubbs initiator 23 (2.7 mg, 0.3×10-2 mmol). The resulting clear, pale pink solution changed to a clear yellow color after refluxing for 24 h. Three additional portions of 23 (2.7 mg, 0.3×10-2 mmol; a total of 1.2×10-2 mmol) were added after 24, 48, and 72 h, respectively. After refluxing for a total of 4 d, the reaction mixture was concentrated to <1 mL on a rotary evaporator, and the remaining mixture was purified directly by flash column chromatography over SiO2 [eluting with 3% EtOAc in PE (bp 60-90 °C)] to give (12Z)-amphidinolide X [(12Z)-1, 24.0 mg, 85%]. (12Z)-Amphidinolide X [(12Z)-1]: colorless oil; [α]D 17 -16.0 (c 1.00, CHCl3). IR (film): 2964, 1731, 1655, 1454, 1377, 1315, 1269, 1215, 1167, 1049 cm-1. 1H NMR (400 MHz, CDCl3): δ = 6.92 (dd, J = 16.0, 6.4 Hz, 1 H), 5.81 (dd, J = 16.0, 1.6 Hz, 1 H), 5.18 (dt, J = 8.8, 4.0 Hz, 1 H), 4.88 (d, J = 10.4 Hz, 1 H), 4.82 (dt, J = 8.8, 7.2 Hz, 1 H), 3.74 (ddd, J = 10.0, 7.6, 2.8 Hz, 1 H), 2.96-2.89 (m, 1 H), 2.85-2.80 (m, 1 H), 2.66-2.58 (m, 2 H), 2.53 (dd, J = 14.8, 4.8 Hz, 1 H), 2.42-2.33 (m, 2 H), 2.26-2.19 (m, 1 H), 2.16 (s, 3 H), 1.89-1.82 (m, 2 H), 1.70 (s, 3 H), 1.64 (dd, J = 13.2, 7.2 Hz, 1 H), 1.49-1.47 (m, 2 H), 1.36-1.30 (m, 2 H), 1.26 (s, 3 H), 1.15 (d, J = 7.6 Hz, 3 H), 1.05 (d, J = 6.8 Hz, 3 H), 0.91 (t, J = 7.6 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 206.4, 171.3, 166.0, 151.7, 137.3, 126.3, 120.0, 81.9, 79.5, 78.0, 72.8, 44.8, 43.8, 43.1, 40.0, 35.9, 33.9, 31.4, 30.1, 27.3, 26.7, 23.5, 19.6, 17.8, 14.7, 14.6. MS (+ESI): m/z (rel. int.) = 471 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H40O6Na+ [M + Na+], 471.2717; found: 471.2719.

20

Procedure for the Synthesis of Amphidinolide X via Ring-Closing Metathesis of 17 Using Second-Generation Grubbs Initiator 23 as the Key Step To a degassed, refluxing solution of 17 (150.0 mg, 0.21 mmol) in anhyd CH2Cl2 (150 mL) under a nitrogen atmosphere was added the second-generation Grubbs initiator 23 (8.9 mg, 1.1×10-2 mmol). The resulting clear, pale pink solution changed to a clear yellow color after refluxing for 24 h. Three additional portions of 23 (8.9 mg, 1.1×10-2 mmol; a total of 4.4×10-2 mmol) were added after 24, 48, and 72 h, respectively. After refluxing for a total of 6 d, the reaction mixture was concentrated to <1 mL on a rotary evaporator and the remaining mixture was purified directly by flash column chromatography over SiO2 [eluting with 3% EtOAc in PE (bp 60-90 °C)] to give a 71:29 mixture of the Z and E RCM products 20 and 21 (70.0 mg, 50%) as a colorless oil. The Z/E ratio was determined by the integration of the corresponding signals in the 1H NMR spectrum. An pure sample of isomer 20 was obtained by flash column chromatography [eluting with 3% EtOAc in PE (bp 60-90 °C)] of the product mixture.
Compound 20: colorless oil; [α]D 17 -35.9 (c 2.0, CHCl3).
IR (film): 2929, 1733, 1653, 1456, 1428, 1379, 1268, 1167, 1112, 1086 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.68-7.65 (m, 4 H), 7.42-7.32 (m, 6 H), 6.93 (dd, J = 16.0, 6.0 Hz, 1 H), 5.75 (dd, J = 16.0, 1.6 Hz, 1 H), 5.02-5.00 (m, 1 H), 4.86 (d, J = 10.8 Hz, 1 H), 4.78 (dt, J = 8.4, 7.2 Hz, 1 H), 3.82-3.78 (m, 1 H), 3.74-3.70 (m, 1 H), 2.97-2.89 (m, 1 H), 2.74-2.67 (m, 1 H), 2.43-2.36 (m, 2 H), 2.30-2.22 (m, 2 H), 1.91-1.71 (m, 4 H), 1.67 (s, 3 H), 1.64-1.61 (m, 2 H), 1.48-1.44 (m, 2 H), 1.36-1.30 (m, 2 H), 1.25 (s, 3 H), 1.14 (d, J = 6.8 Hz, 3 H), 1.02 (d, J = 6.0 Hz, 3 H), 1.00 (s, 9 H), 0.96 (d, J = 7.2 Hz, 3 H), 0.91 (t, J = 7.2 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 171.3, 166.2, 151.8, 136.3 (2), 136.1 (2), 135.7, 135.3, 134.2, 129.7, 129.6, 127.7 (2), 127.6 (2), 127.4, 119.9, 81.7, 79.8, 77.8, 74.3, 67.6, 44.8, 44.0, 40.1, 38.5, 36.1, 33.4, 31.3, 27.2 (3), 27.1, 26.8, 24.2, 23.3, 19.5, 19.3, 17.9, 14.8, 14.4. MS (+ESI): m/z (rel. int.) = 711 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C42H60O6SiNa+ [M + Na+], 711.4051; found: 711.4054.
A plastic tube was charged with the 71:29 mixture of 20 and 21 (50.0 mg) in THF (2 mL) followed by adding 70% hydrogen fluoride pyridine (2 mL) at r.t. The resultant mixture was stirred for 24 h at r.t. and the reaction was quenched carefully with sat. aq Na2CO3. The reaction mixture was extracted with Et2O and the combined organic layer was dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography over SiO2 [eluting with 20% EtOAc in PE (bp 60-90 °C)] to give a mixture of the alcohol (34.0 mg, 75%) as a colorless oil. The structure of the alcohol was confirmed by mass spectrometry data. MS (+ESI): m/z (rel. int.) = 473 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H42O6Na+ [M + Na+]: 473.2874; found: 473.2880.
To a solution of the above mixture (34.0 mg, 7.5×10-2 mmol) in CH2Cl2 (1 mL) at r.t. was added NaHCO3 (19 mg, 0.225 mmol) followed by carefully adding a solution of Dess-Martin periodinane in CH2Cl2 (0.3 M, 0.5 mL, 0.15 mmol). The resultant mixture was stirred at r.t. for 4 h followed by treating with sat. aq Na2S2O3. The reaction mixture was extracted with CH2Cl2. The organic layer was washed with brine, dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography over SiO2 [eluting with 15% EtOAc in PE (bp 60-90 °C)] to give amphidinolide X (1, 8.0 mg, 23%) and (12Z)-amphidinolide X [(12Z)-1, 21.0 mg, 62%].
Amphidinolide X (1): colorless oil; [α]D 17 -26.8 (c 1.00, CHCl3). IR (film): 2963, 1717, 1654, 1453, 1377, 1265, 1186, 1039 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.12 (dd, J = 15.8, 7.2 Hz, 1 H), 5.79 (dd, J = 15.8, 1.6 Hz, 1 H), 5.20 (m, 2 H), 4.95 (d, J = 10.3 Hz, 1 H), 3.96 (dt, J = 11.2, 3.6 Hz, 1 H), 2.78 (m, 1 H), 2.69 (dd, J = 16.6, 6.1 Hz, 1 H), 2.69 (m, 1 H), 2.58 (dd, J = 13.6, 3.9 Hz, 1 H), 2.58 (dd, J = 16.5, 7.5 Hz, 1 H), 2.41 (dd, J = 13.3, 6.3 Hz, 1 H), 2.18 (m, 1 H), 2.17 (m, 1 H), 2.14 (s, 3 H), 2.12 (m, 1 H), 1.94 (tt, J = 13.5, 3.3 Hz, 1 H), 1.75 (dd, J = 13.9, 2.4 Hz, 1 H), 1.55 (s, 3 H), 1.54 (m, 1 H), 1.50 (m, 2 H), 1.35 (m, 2 H), 1.30 (s, 3 H), 1.14 (d, J = 6.9 Hz, 3 H), 0.92 (t, J = 7.5 Hz, 3 H), 0.91 (d, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 205.5, 170.7, 165.8, 153.2, 135.6, 126.1, 120.3, 83.0, 80.6, 78.5, 74.3, 47.2, 44.3, 43.6, 41.5, 35.6, 35.4, 33.1, 30.5, 30.5, 24.7, 18.2, 17.9, 17.6, 15.5, 14.7. MS (+ESI): m/z (rel. int.) = 471 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H40O6Na+ [M + Na+]: 471.2717; found: 471.2699.