RSS-Feed abonnieren
DOI: 10.1055/s-2008-1077968
Use of Acyl Phosphonates as a Coupling Partner for Rhodium-Catalyzed [2+2+2] Cycloaddition: Unexpected Dependence of the Reactivity on Structures of α,ω-Diynes
Publikationsverlauf
Publikationsdatum:
15. Juli 2008 (online)

Abstract
A cationic rhodium(I)-H8-BINAP complex catalyzes a [2+2+2] cycloaddition of 1,6- and 1,7-diynes with acyl phosphonates in high yields with high regioselectivity. Interestingly, the reactivity of α,ω-diynes toward acyl phosphonates is highly dependent on their own structures.
Key words
acylphosphonates - alkynes - cycloaddition - H8-BINAP - rhodium
- For recent reviews of transition-metal-catalyzed [2+2+2] cycloadditions, see:
- 1a
Agenet N.Buisine O.Slowinski F.Gandon V.Aubert C.Malacria M. In Organic Reactions Vol. 68:Overman LE. John Wiley; Hoboken: 2007. p.1Reference Ris Wihthout Link - 1b
Heller B.Hapke M. Chem. Soc. Rev. 2007, 36: 1085Reference Ris Wihthout Link - 1c
Chopade PR.Louie J. Adv. Synth. Catal. 2006, 348: 2307Reference Ris Wihthout Link - 1d
Gandon V.Aubert C.Malacria M. Chem. Commun. 2006, 2209Reference Ris Wihthout Link - 1e
Kotha S.Brahmachary E.Lahiri K. Eur. J. Org. Chem. 2005, 4741Reference Ris Wihthout Link - 1f
Yamamoto Y. Curr. Org. Chem. 2005, 9: 503Reference Ris Wihthout Link - 1g
Robinson JE. In Modern Rhodium-Catalyzed Organic ReactionsEvans PA. Wiley-VCH; Weinheim: 2005. p.129Reference Ris Wihthout Link - 1h
Varela JA.Saá C. Chem. Rev. 2003, 103: 3787Reference Ris Wihthout Link - For the use of stoichiometric cobalt reagents, see:
- 2a
Harvey DF.Johnson BM.Ung CS.Vollhardt KPC. Synlett 1989, 15Reference Ris Wihthout Link - 2b For the use of stoichiometric zirconacyclopentadienes,
see:
Gleiter R.Schehlmann V. Tetrahedron Lett. 1989, 30: 2893Reference Ris Wihthout Link - 2c
Takahashi T.Li Y.Ito T.Xu F.Nakajima K.Liu Y. J. Am. Chem. Soc. 2002, 124: 1144Reference Ris Wihthout Link - For Ni catalysis, see:
- 3a
Tsuda T.Kiyoi T.Miyane T.Saegusa T. J. Am. Chem. Soc. 1988, 110: 8570Reference Ris Wihthout Link - 3b
Tekavec TN.Louie J. Org. Lett. 2005, 7: 4037Reference Ris Wihthout Link - 3c
Tekavec TN.Louie J. J. Org. Chem. 2008, 73: 2641Reference Ris Wihthout Link - 4 For Ni-catalyzed [4+2+2] cycloaddition
of 1,6-diynes with cyclobutanones, see:
Murakami M.Ashida S.Matsuda T. J. Am. Chem. Soc. 2006, 128: 2166Reference Ris Wihthout Link - 5 For Ru catalysis, see:
Yamamoto Y.Takagishi H.Itoh K. J. Am. Chem. Soc. 2002, 124: 6844 - 6 For Ru(II)-catalyzed hydrative cyclization
and [4+2] cycloaddition of yne-enones,
see:
Trost BM.Brown RE.Toste FD. J. Am. Chem. Soc. 2000, 122: 5877 - 7
Bennacer B.Fujiwara M.Lee S.-Y.Ojima I. J. Am. Chem. Soc. 2005, 127: 17756 - 8
Kong JR.Krische MJ. J. Am. Chem. Soc. 2006, 128: 16040 - For examples of carbonyl insertion into a Rh-C bond, see:
- 9a
Krug C.Hartwig JF. J. Am. Chem. Soc. 2002, 124: 1674Reference Ris Wihthout Link - 9b
Fujii T.Koike T.Mori A.Osakada K. Synlett 2002, 298Reference Ris Wihthout Link - 10a
Tanaka K.Otake Y.Wada A.Noguchi K.Hirano M. Org. Lett. 2007, 9: 2203Reference Ris Wihthout Link - After our publication, a similar manuscript was published, see:
- 10b
Tsuchikama K.Yoshinami Y.Shibata T. Synlett 2007, 1395Reference Ris Wihthout Link - 11 Recently, we have reported a cationic
rhodium(I)-H8-BINAP-catalyzed regio-, diastereo-,
and enantioselective [2+2+2] cycloaddition
of 1,6-enynes with electron-deficient ketones. See:
Tanaka K.Otake Y.Sagae H.Noguchi K.Hirano M. Angew. Chem. Int. Ed. 2008, 47: 1312Reference Ris Wihthout Link - 12a
Nishida G.Noguchi K.Hirano M.Tanaka K. Angew. Chem. Int. Ed. 2007, 46: 3951Reference Ris Wihthout Link - 12b
Nishida G.Noguchi K.Hirano M.Tanaka K. Angew. Chem. Int. Ed. 2008, 47: 3410Reference Ris Wihthout Link - For selected recent examples, see:
- 13a
Mandal T.Samanta S.Zhao C.-G. Org. Lett. 2007, 9: 943Reference Ris Wihthout Link - 13b
Samanta S.Zhao C.-G. J. Am. Chem. Soc. 2006, 128: 7442Reference Ris Wihthout Link - 13c
Demir AS.Reis O.Kayalar M.Eymur S.Reis B. Synlett 2006, 3329Reference Ris Wihthout Link - 13d
Kim DY.Wiemer DF. Tetrahedron Lett. 2003, 44: 2803Reference Ris Wihthout Link - For examples, see:
- 14a
Yamashita M.Kojima M.Yoshida H.Ogata T.Inokawa S. Bull. Chem. Soc. Jpn. 1980, 53: 1625Reference Ris Wihthout Link - 14b
Kojima M.Yamashita M.Yoshida H.Ogata T. Synthesis 1979, 147Reference Ris Wihthout Link - To the best of our knowledge, only two examples of a cycloaddition reaction using acyl phosphonates as a coupling partner have been reported. For a photochemical cycloaddition with aziridines, see:
- 15a
Gakis N.Heimgartner H.Schmid H. Helv. Chim. Acta 1975, 58: 748Reference Ris Wihthout Link - For hetero-Diels-Alder reactions involving α,β-unsaturated acyl phosphonates, see:
- 15b
Evans DA.Johnson JS.Olhava EJ. J. Am. Chem. Soc. 2000, 122: 1635Reference Ris Wihthout Link - For our accounts of [2+2+2] cycloadditions catalyzed by a cationic rhodium(I)-BINAP-type bisphosphine complex, see:
- 16a
Tanaka K. Synlett 2007, 1977Reference Ris Wihthout Link - 16b
Tanaka K.Nishida G.Suda T. J. Synth. Org. Chem. Jpn. 2007, 65: 862Reference Ris Wihthout Link - 18 Equilibrium coordination of the
ester carbonyl oxygen vs. the alkyne moiety of a malonate-linked
1,6-diyne is proposed in the Ru-catalyzed [2+2+2] cycloaddition
of alkynes, see:
Yamamoto Y.Arakawa T.Ogawa R.Itoh K. J. Am. Chem. Soc. 2003, 125: 12143Reference Ris Wihthout Link
References and Notes
In general, terminal alkynes are more reactive and coordinative toward rhodium than internal alkynes. Therefore, the reaction of terminal 1,6-diyne 1d with 2b results in the rapid homo-[2+2+2] cycloaddition of 1d via a rhodacyclopentadiene intermediate. On the other hand, the formation of the rhodacyclopentadiene intermediate from terminal 1,7-diyne 1h may be slower than that from terminal 1,6-diynes for steric reasons. Thus, the reaction of 1h with 2b may furnish the oxarhodacyclopentene intermediate. Insertion of another terminal alkyne moiety of 1h followed by reductive elimination of rhodium furnishes the corresponding cross-[2+2+2] cycloaddition product 3hb in good yield.
19
Typical Procedure
(Table 2, entry 1)
Under an argon atmosphere, H8-BINAP
(12.6 mg, 0.02 mmol) and [Rh(cod)2]BF4 (8.1
mg, 0.02 mmol) were dissolved in CH2Cl2 (2.0
mL), and the mixture was stirred at r.t. for 5 min. Hydrogen was
introduced to the resulting solution in a Schlenk tube. After stirring
at r.t. for 1 h, the resulting solution was concentrated to dryness
and dissolved in CH2Cl2 (0.5 mL). To this
solution was added dropwise over 1 min a solution of diyne 1a (55.1 mg, 0.20 mmol) and acyl phosphonate 2a (72.1 mg, 0.40 mmol) in CH2Cl2 (1.0 mL)
at r.t. The mixture was stirred at r.t. for 1 h. The resulting solution
was concentrated and purified by a preparative TLC (hexane-EtOAc,
1:1), which furnished 3aa (76.2 mg, 0.017
mmol, 84% yield) as a pale yellow oil.
Compound 3aa: IR (neat): 3052, 2983, 2867, 1661,
1347, 1237, 1164, 1022, 671 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ (E
-isomer) = 7.74-7.63
(m, 2 H), 7.33-7.21 (m, 2 H), 4.49-4.19 (m, 4
H), 3.97-3.73 (m, 4 H), 2.37 (s, 3 H), 2.10 (s, 3 H), 1.90-1.77
(m, 6 H), 1.16 (t, J = 7.2
Hz, 6 H); δ (Z-isomer) = 7.74-7.63
(m, 2 H), 7.33-7.21 (m, 2 H), 4.30-4.19 (m, 4
H), 4.12-3.97 (m, 4 H), 2.38 (s, 3 H), 2.10 (s, 3 H), 1.90-1.77
(m, 3 H), 1.58 (dd, J = 13.5,
1.5 Hz, 3 H), 1.28 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.9, 149.6,
149.4, 143.6, 142.8, 142.7, 133.9, 131.6, 129.9, 129.7, 127.4, 126.4,
124.0, 61.64, 61.56, 58.87, 58.86, 55.2, 28.3, 27.9, 21.4, 20.0,
19.8, 16.2, 16.11, 16.10, 15.9, 15.8. ³¹P
NMR (121 MHz, CDCl3): δ (E
-isomer) = 17.8; δ (Z
-isomer) = 17.9.
ESI-HRMS: m/z calcd for C21H30NO6PSNa [M + Na]+:
478.1429; found: 478.1428.
Compound (E)-3ab: pale yellow oil. ¹H
NMR (300 MHz, CDCl3): δ = 7.51 (d, J = 8.4 Hz,
2 H), 7.28 (d, J = 8.4
Hz, 2 H), 7.16-7.00 (m, 3 H), 6.95-6.83 (m, 2
H), 4.12-3.87 (m, 8 H), 2.45 (s, 3 H), 2.29 (d, J = 3.3 Hz,
3 H), 2.17 (s, 3 H), 1.18 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.3, 159.8,
148.7, 148.4, 147.6, 147.4, 143.7, 136.9, 133.1, 132.4, 131.8, 129.9,
128.22, 128.16, 127.91, 127.89, 127.62, 127.58, 127.3, 62.1, 62.0,
57.9, 54.8, 28.8, 21.5, 20.3, 20.2, 16.2, 16.1. ³¹P
NMR (121 MHz, CDCl3): δ = 14.5.
Compound
(Z)-3ab: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.76
(d, J = 8.4
Hz, 2 H), 7.41-7.24 (m, 5 H), 7.17-7.09 (m, 2
H), 4.52 (s, 2 H), 4.51-4.28 (m, 2 H), 3.92-3.67
(m, 2 H), 3.78-3.52 (m, 2 H), 2.40 (s, 3 H), 2.32 (s, 3 H),
1.68 (d, J = 2.7
Hz, 3 H), 1.04 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.9,
148.7, 148.6, 145.3, 145.2, 143.7, 136.0, 135.9, 134.0, 133.5, 132.04,
132.03, 131.1, 129.8, 128.83, 128.77, 128.53, 128.51, 127.83, 127.80,
127.5, 62.14, 62.06, 59.0, 55.3, 28.7, 21.5, 21.4, 21.2, 16.1, 16.0. ³¹P
NMR (121 MHz, CDCl3): δ = 14.0.
Compound 3bb: pale yellow oil. ¹H
NMR (300 MHz, CDCl3): δ (E
-isomer) = 7.73 (d, J = 7.8 Hz,
2 H), 7.41-7.05 (m, 7 H), 4.60 (t, J = 4.2
Hz, 2 H), 4.37 (t, J = 4.2
Hz, 2 H), 3.91-3.77 (m, 2 H), 3.77-3.60 (m, 2
H), 3.36 (d, J = 0.9
Hz, 3H), 2.43 (s, 3 H), 2.38 (s, 3 H), 1.05 (t, J = 7.2
Hz, 6 H); δ (Z
-isomer) = 7.57
(d, J = 7.5
Hz, 2 H), 7.41-7.05 (m, 5 H), 6.99 (d, J = 7.2
Hz, 2 H), 4.23 (t, J = 4.2
Hz, 2 H), 4.13-3.91 (m, 6 H), 3.82 (s, 3 H), 2.43 (s, 3
H), 2.22 (s, 3 H), 1.19 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.1, 193.7,
165.3, 164.8, 164.5, 143.7, 143.6, 141.0, 140.6, 140.5, 140.4, 140.3
138.7, 138.6, 138.5, 138.41, 138.38, 136.2, 136.0, 134.9, 134.8,
133.8, 133.7, 133.0, 129.8, 129.7, 128.6, 128.52, 128.49, 128.45,
128.22, 128.17, 127.9, 127.8, 127.6, 127.5, 127.4, 63.0, 62.9, 62.8,
59.88, 59.86, 59.3, 55.5, 55.3, 53.1, 52.5, 29.0, 28.8, 21.42, 21.38,
16.1, 16.0, 15.9. ³¹P NMR (121 MHz,
CDCl3): δ (E
-isomer) = 11.9; δ (Z
-isomer) = 11.0.
Compound
(E)-3ca: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.73
(d, J = 8.1
Hz, 2 H), 7.35 (d, J = 8.1
Hz, 2 H), 7.29-7.16 (m, 1 H), 4.46-4.35 (m, 4
H), 4.18-4.03 (m, 4 H), 2.44 (s, 3 H), 2.21 (s, 3 H), 1.85
(dd, J = 15.0,
1.5 Hz, 3 H), 1.33 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.0,
144.2, 141.7, 141.3, 135.5, 134.8, 133.2, 133.1, 132.9, 132.5, 130.0,
127.5, 62.3, 62.2, 57.8, 55.0, 29.9, 21.5, 16.4, 16.3, 14.9, 14.8. ³¹P
NMR (121 MHz, CDCl3): δ = 19.3.
Compound
(Z)-3ca: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.74
(d, J = 8.1
Hz, 2 H), 7.33 (d, J = 8.1
Hz, 2 H), 6.77-6.54 (m, 1 H), 4.51-4.43 (m, 2
H), 4.37-4.29 (m, 2 H), 4.07-3.90 (m, 4 H), 2.42
(s, 3 H), 2.20 (s, 3 H), 2.04 (dd, J = 13.2,
1.8 Hz, 3 H), 1.24 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.1,
143.9, 143.8, 143.7, 134.2, 134.0, 133.9, 133.6, 133.48, 133.47,
131.9, 129.8, 127.6, 62.1, 62.0, 59.1, 59.0, 55.0, 29.8, 22.1, 22.0,
21.5, 16.3, 16.2. ³¹P NMR (121 MHz,
CDCl3): δ = 16.7.
Compound
(E)-3eb: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.25-7.15
(m, 3 H), 7.07-6.97 (m, 2 H), 4.12-3.91 (m, 4
H), 3.60 (s, 6 H), 3.10-3.02 (m, 2 H), 2.95 (s, 2 H), 2.35
(d, J = 3.3
Hz, 3 H), 2.18 (s, 3 H), 1.20 (t, J = 7.2 Hz,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 195.4,
171.0, 152.0, 151.7, 151.6, 151.4, 137.4, 137.3, 133.8, 129.8, 128.8,
128.7, 127.8, 127.5, 127.3, 61.9, 61.8, 56.8, 53.0, 44.9, 40.8,
29.0, 20.2, 20.1, 16.2, 16.1. ³¹P NMR
(121 MHz, CDCl3): δ = 15.6.
Compound
(Z)-3eb: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.40-7.28
(m, 3 H), 7.22-7.16 (m, 2 H), 3.96-3.70 (m, 4
H), 3.74 (s, 6 H), 3.70-3.30 (m, 4 H), 2.33 (s, 3 H), 1.79
(d, J = 2.4
Hz, 3 H), 1.10 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 195.8
152.4, 152.2, 150.1, 150.0, 136.8, 136.6, 133.9, 130.5, 129.11,
129.05, 128.4, 128.0, 127.5, 127.4, 61.9, 61.8, 57.3, 53.0, 45.6,
41.0, 28.9, 21.1, 20.9, 16.1, 16.0. ³¹P
NMR (121 MHz, CDCl3): δ = 14.7.
Compound
(E)-3ha: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.66
(s, 1 H), 7.14-7.00 (m, 1 H), 4.20-3.95 (m, 4
H), 2.34-2.14 (m, 4 H), 1.77 (dd, J = 14.4,
1.8 Hz, 3 H), 1.75-1.59 (m, 4 H), 1.34 (t, J = 7.2 Hz,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.2,
154.0, 153.7, 140.9, 140.7, 135.6, 131.6, 129.2, 62.0, 61.9, 30.6,
21.7, 21.6, 21.2, 16.4, 16.3, 14.2, 14.1. ³¹P
NMR (121 MHz, CDCl3): δ = 20.3.
Compound
(Z)-3ha: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.79
(s, 1 H), 6.70-6.60 (m, 1 H), 4.12-3.92 (m, 4
H), 2.35-2.15 (m, 4 H), 2.04 (dd, J = 13.2,
1.8 Hz, 3 H), 1.74-1.56 (m, 4 H), 1.28 (t, J = 7.2 Hz,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.6,
155.6, 155.5, 141.0, 140.9, 135.1, 131.7, 129.3, 61.7, 61.6, 31.4,
21.8, 21.7, 21.6, 21.5, 21.1, 16.4, 16.3. ³¹P
NMR (121 MHz, CDCl3): δ = 17.6.
Compound
(E)-3hb: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.85
(s, 1 H), 7.54 (d, J = 23.1
Hz, 1 H), 7.32-7.13 (m, 5 H), 4.18-3.99 (m, 4
H), 2.16-2.00 (m, 4 H), 1.57-1.41 (m, 4 H), 1.26
(t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 191.6,
153.3, 153.0, 142.4, 142.2, 137.3, 135.9, 135.0, 134.4, 134.3, 128.6,
128.5, 128.4, 128.20, 128.17, 62.5, 62.4, 30.92, 30.90, 21.7, 21.0,
16.3, 16.2. ³¹P NMR (121 MHz, CDCl3): δ = 17.2.
Compound
(Z)-3hb: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.93
(s, 1 H), 7.45-7.31 (m, 5 H), 7.08-6.88 (m, 1
H), 4.08-3.83 (m, 4 H), 2.50-2.38 (m, 2 H), 2.34-2.21
(m, 2 H), 1.75-1.64 (m, 4 H), 1.18 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.4,
155.5, 155.4, 144.4, 144.3, 138.5, 138.4, 137.7, 135.3, 135.17,
135.15, 128.3, 128.12, 128.05, 62.1, 62.0, 31.24, 31.21, 21.9, 21.7,
21.1, 16.2, 16.1. ³¹P NMR (121 MHz,
CDCl3): δ = 15.1.