RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078051
Aryl Norbornanes and Analogues via Palladium-Catalyzed Hydroarylation with Arenediazonium Tetrafluoroborates
Publikationsverlauf
Publikationsdatum:
12. September 2008 (online)
Abstract
The palladium-catalyzed hydroarylation of arenediazonium tetrafluoroborates with norbornene derivatives and analogues in the presence of Pd(OAc)2 and i-Pr3SiH in THF affords hydroarylation products containing the added aryl unit in the exo position in good to high yields. The reaction tolerates a variety of useful functional groups and can be performed as a one-pot procedure generating the arenediazonium salt in situ.
Key words
norbornene - palladium - hydroarylation - arenediazonium salts
- 1 For an excellent recent review on
            the palladium-chemistry of arenediazonium salts, see:  
            
Roglans A.Pla-Quintana A.Moreno-Mañas M. Chem. Rev. 2006, 106: 4622 - For some recent selected references, see:
 - 2a 
             
            
Ma Y.Song C.Chai Q.Ma C.Andrus MB. Synthesis 2003, 2886 - 2b 
             
            
Wang C.Tan L.-S.He J.-P.Hu H.-W.Xu J.-H. Synth. Commun. 2003, 33: 773 - 2c 
             
            
Masllorens J.Moreno-Manãs M.Pla-Quintana A.Roglans A. Org. Lett. 2003, 5: 1559 - 2d 
             
            
Schmidt B. Chem. Commun. 2003, 1656 - 2e 
             
            
Nelson ML.Ismail MY.McIntyre L.Bhatia B.Viski P.Hawkins P.Rennie G.Andorsky D.Messersmith D.Stapleton K.Dumornay J.Sheahan P.Verma AK.Warchol T.Levy SB. J. Org. Chem. 2003, 68: 5838 - 2f 
             
            
Dai M.Liang B.Wang C.Chen J.Yang Z. Org. Lett. 2004, 6: 221 - 2g 
             
            
Kabalka GW.Dong G.Venkataiah B. Tetrahedron Lett. 2004, 45: 2775 - 2h 
             
            
Xu L.-H.Zhang Y.-Y.Wang X.-L.Chou J.-Y. Dyes Pigm. 2004, 62: 283 - 2i 
             
            
Sabino AA.Machado AHL.Correia CRD.Eberlin MN. Angew. Chem. Int. Ed. 2004, 43: 2514 - 2j 
             
            
Sabino AA.Machado AHL.Correia CRD.Eberlin MN. Angew. Chem. Int. Ed. 2004, 43: 2514 ; corrigendum: Angew. Chem. Int. Ed. 2004, 43, 4389 - 2k 
             
            
Masllorens J.Bouquillon S.Roglans A.Hénin F.Muzart J. J. Organomet. Chem. 2005, 690: 3822 - 2l 
             
            
Garcia ALL.Carpes MJS.Montes de Oca ACB.dos Santos MAG.Santana CC.Correia CRD. J. Org. Chem. 2005, 70: 1050 - 2m 
             
            
Artuso E.Barbero M.Degani I.Dughera S.Fochi R. Tetrahedron 2006, 62: 3146 - 2n 
             
            
Pastre JC.Correia CRD. Org. Lett. 2006, 8: 1657 - 2o 
             
            
Perez R.Veronese D.Coelho F.Antunes OAC. Tetrahedron Lett. 2006, 47: 1325 - For some recent references, see:
 - 3a 
             
            
Peyroux E.Berthiol F.Doucet H.Santelli M. Eur. J. Org. Chem. 2004, 1075 - 3b 
             
            
Jo J.Chi C.Höger S.Wegner G.Yoon DY. Chem. Eur. J. 2004, 10: 2681 - 3c See also:  
            
Gallo V.Mastrorilli P.Nobile CF.Paolillo R.Taccardi N. Eur. J. Inorg. Chem. 2005, 582 - 3d 
             
            
Darses S.Genet JP. Eur. J. Org. Chem. 2003, 4313 - 4a 
             
            
Kikukawa K.Kono K.Wada F.Matsuda T. Chem. Lett. 1982, 35 - 4b 
             
            
Kikukawa K.Kono K.Wada F.Matsuda T. J. Org. Chem. 1983, 48: 1333 - 4c 
             
            
Kikukawa K.Idemoto T.Katayama A.Kono K.Wada F.Matsuda T. J. Chem. Soc., Perkin Trans. 1 1987, 1511 - 4d 
             
            
Dughera S. Synthesis 2006, 1117 - 5a 
             
            
Kikukawa K.Kono K.Nagira K.Wada F.Matsuda T. Tetrahedron Lett. 1980, 21: 2877 - 5b 
             
            
Nagira K.Kikukawa K.Wada F.Matsuda T. J. Org. Chem. 1980, 45: 2365 - 5c 
             
            
Kikukawa K.Kono K.Nagira K.Wada F.Matsuda T. J. Org. Chem. 1981, 46: 4413 - 5d 
             
            
Sengupta S.Sadhukhan SK.Bhattacharyya S.Guha J. J. Chem. Soc., Perkin Trans. 1 1998, 407 - 5e 
             
            
Kikukawa K.Totoki T.Wada F.Matsuda T. J. Organomet. Chem. 1984, 270: 283 - 5f 
             
            
Siegrist U.Rapold T.Blaser H.-U. Org. Process Res. Dev. 2003, 7: 429 - 6 
             
            
Pelzer G.Keim W. J. Mol. Catal. A: Chem. 1999, 139: 235 - 7a 
             
            
Willis DM.Strongin RM. Tetrahedron Lett. 2000, 41: 8683 - 7b 
             
            
Ma Y.Song C.Jiang W.Xue G.Cannon JF.Wang X.Andrus MB. Org. Lett. 2003, 5: 4635 - 8 
             
            
Cacchi S.Fabrizi G.Goggiamani A.Persiani D. Org. Lett. 2008, 10: 1597 - 9a 
             
            
Arcadi A.Marinelli F.Bernocchi E.Cacchi S.Ortar G. J. Organomet. Chem. 1989, 368: 249 - 9b 
             
            
Larock RC.Johnson PL. Chem. Commun. 1989, 1368 - 10 
             
            
Mayo P.Tam W. Tetrahedron 2002, 58: 9527 - 11 
             
            
Wållberg A.Magnusson G. Tetrahedron 2000, 56: 8533 - 12a 
             
            
Clayton SC.Regan AC. Tetrahedron Lett. 1993, 34: 7493 - 12b 
             
            
Bai D.Xu R.Chu G.Zhu X. J. Org. Chem. 1996, 61: 4600 - 13a 
             
            
Kasyan A.Wagner C.Maier ME. Tetrahedron 1998, 54: 8047 - 13b 
             
            
Carroll FI.Brieaddy LE.Navarro HA.Damaj MI.Martin BR. J. Med. Chem. 2005, 48: 7491 - 14a 
             
            
Brunner H.Kramler K. Synthesis 1991, 1121 - 14b 
             
            
Sakuraba S.Awano K.Achiwa K. Synlett 1994, 291 - 14c 
             
            
Sakuraba S.Okada T.Morimoto T.Achiwa K. Chem. Pharm. Bull. 1995, 43: 927 - 14d 
             
            
Wu X.-Y.Xu H.-D.Zhoua Q.-L.Chan ASC. Tetrahedron: Asymmetry 2000, 11: 1255 - 14e 
             
            
Wu X.-Y.Xu H.-D.Tang F.-Y.Zhou Q.-L. Tetrahedron: Asymmetry 2001, 12: 2565 - 15a 
             
            
Kikukawa K.Nagira K.Wada F.Matsuda T. Tetrahedron 1981, 37: 31 - 15b 
             
            
Sengupta S.Bhattacharyya S. J. Chem. Soc., Perkin Trans. 1 1993, 1943 - 19 
             
            
Doyle MP.Bryker WJ. J. Org. Chem. 1979, 44: 1572 - 21a 
             
            
Hatanaka Y.Hiyama T. Tetrahedron Lett. 1990, 31: 2719 - 21b 
             
            
Hatanaka Y.Hiyama T. J. Am. Chem. Soc. 1990, 112: 7783 
References and Notes
When 1a was subjected to the reaction conditions reported in Table [¹] (entry 5) omitting Pd(OAc)2 no reduction product 4 was formed suggesting that the reduction of 1a to 4 proceeds through a palladium-catalyzed process.
17
         Typical Procedure
            for the Palladium-Catalyzed Hydro-arylation of Norbornene Derivatives
            with Arenediazo-nium Tetrafluoroborates - Hydroarylation
            of 1a with 2a (Table 2, entry 1)
         
To a stirred solution
         of 1a (105.1 mg, 0.50 mmol) and Pd(OAc)2 (5.6
         mg, 0.025 mmol) in anhyd THF (4.0 mL), 2a (233.8
         mg, 1.0 mmol) was added at r.t. under argon. The reaction mixture
         was cooled in an ice bath. Then, i-Pr3SiH (205 µL,
         1.0 mmol) was added and the reaction mixture was stirred at 15 ˚C
         for 40 min under argon (the reactor was protected from light with
         aluminum film). After this time, the mixture was diluted with EtOAc,
         washed with H2O, dried over Na2SO4,
         and concentrated under reduced pressure. The residue was purified
         by chromatography on silica gel [n-hexane-EtOAc,
         90:10 (v/v)] to afford 120.8 mg (73% yield)
         of 3a, mp 64-66 ˚C.
         IR (KBr): 2968, 1735, 1198 cm-¹. ¹H
         NMR (400 MHz, CDCl3): δ = 7.89 (d, J = 8.2 Hz, 2
         H), 7.38 (d, J = 8.2
         Hz, 2 H), 3.70 (s, 6 H), 3.64 (t, J = 7.4 Hz,
         1 H), 3.19 (ddd, J
         1 = 11.7
         Hz, J
         2 = 4.5
         Hz, J
         3 = 1.4
         Hz, 1 H), 2.99 (dd, J
         1 = 11.8
         Hz, J
         2 = 3.7
         Hz, 1 H), 2.75-270 (m, 1 H), 2.73-2.58 (m, 1 H),
         2.13 (ddd, J
         1 = 11.1
         Hz, J
         2 = 8.8
         Hz, J
         3 = 3.7
         Hz, 1 H), 1.74-1.65 (m, 2 H), 1.42-1.26 (m, 1
         H). ¹³C NMR (100.6 MHz, CDCl3): δ = 197.9,
         172.9, 172.6, 151.9, 134.9, 128.5, 127.5, 51.7, 51.5, 47.7, 46.2,
         45.9, 41.6, 40.2, 37.5, 33.2, 26.6. MS: m/z (relative
         intensity) = 330 (12) [M+],
         298 (10), 270 (57), 185 (232), 43 (100).
NOESY experiments on 3a: for selected H-H interactions, see Figure [²] .

Figure 2
         Palladium-Catalyzed
            Hydroarylation of 1a with 2a Generated In Situ
         
A solution
         of BF3˙OEt2 (140 µL, 1.1
         mmol) in anhyd THF (1 mL) was cooled at -15 ˚C
         and p-aminoacetophenone (135.1 mg, 1
         mmol) was added. Then, tert-butyl nitrite
         (160 µL, 1.3 mmol) in 1 mL of the same solvent was added
         dropwise to the rapidly stirred reaction solution over a period
         of 10 min. Following complete addition, the temperature of the solution was
         maintained at -15 ˚C for 10 min and subsequently allowed
         to warm to 5 ˚C in an ice-water bath over a period of
         20 min. Then, the reaction mixture was warmed to r.t. and stirred
         at the same temperature till the starting p-amino-acetophenone
         was converted into p-acetylbenzenediazo-nium
         tetrafluoroborate. The reaction mixture was cooled in an ice bath
         and 1a (105.1 mg, 0.50 mmol), Pd(OAc)2 (5.6 mg,
         0.025 mmol), i-Pr3SiH (205 µL,
         1.0 mmol), and of anhyd THF (2 mL) were added. The reaction mixture
         was allowed to warm to 20 ˚C and stirred at that
         temperature for 6 h under argon (the reactor was protected from
         light with aluminum film). After this time, the mixture was diluted with
         EtOAc, washed with H2O, dried over Na2SO4,
         and concentrated under reduced pressure. The residue was purified
         by chromatography on silica gel [n-hexane-EtOAc, 90:10
         (v/v)] to afford 106.3 mg (64% yield)
         of 3a.