J Reconstr Microsurg 2008; 24(4): 267-276
DOI: 10.1055/s-2008-1078696
© Thieme Medical Publishers

Enhanced Rat Sciatic Nerve Regeneration through Silicon Tubes Implanted with Valproic Acid

Fei Wu1 , Danmou Xing1 , Zhengren Peng1 , Ting Rao2
  • 1Department of Hand Surgery and Microsurgery, Pu Ai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hu Bei Province, People's Republic of China
  • 2Department of Urology, Ren Min Hospital, Wuhan University, Wuhan City, Hu Bei Province, People's Republic of China
Further Information

Publication History

Publication Date:
21 May 2008 (online)

ABSTRACT

Valproic acid (VPA) is an effective antiepileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal-regulated kinase pathway, and increase B-cell lymphoma/leukemia-2 (bcl-2)and growth cone-associated protein 43 (GAP-43) levels in spinal cord. We hypothesized that VPA could enhance axonal regeneration in the rat. In the present research, we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function through a silicon tube implanted with VPA. The left sciatic nerves were exposed through dorsal-splitting incisions, and 8-mm nerve sections were excised at the middle of the thigh. Then, a 1.0-cm-long silicone tube (internal diameter,1.0 mm; exterior diameter, 2.0 mm) was used to bridge the nerve deficit, anchored to the proximal and distal terminals of the excised deficit of sciatic nerves with 9–0 nylon epineural suture. Sterile petroleum jelly was used to seal the ends of the tubes to avoid leakage. The rats in the VPA group and control group were locally delivered 10 μL VPA injection (400 mg/5 mL) and normal saline, respectively, after the operation. The sciatic nerve index (SFI) was observed in each animal at 2-week intervals and electrophysiology was studied at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed at the end of the experiment (12 weeks after the operation). Using the digital image-analysis system, the thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity, amplitude of activity potential), and morphometrical results (regenerated axon number and thickness of myelin sheath) in nerve regeneration between the VPA group and controls (p < 0.05). The results demonstrated that VPA is able to enhance sciatic nerve regeneration in rats, suggesting the potential clinical application of VPA for the treatment of peripheral nerve injury in humans.

REFERENCES

  • 1 Glück T. Uberneoplastik auf dem wege der transplantation.  Arch Klin Chir. 1880;  26 606-616
  • 2 Lundborg G, Dahlin L B, Danielsen N et al.. Ulnar nerve repair by the silicone chamber technique. Case report.  Scand J Plast Reconstr Surg Hand Surg. 1991;  25 79-82
  • 3 Mackinnon S E, Dellon A L. Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube.  Plast Reconstr Surg. 1990;  85 419-424
  • 4 Laeng P, Pitts R L, Lemire A L et al.. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells.  J Neurochem. 2004;  91 238-251
  • 5 Brunello N. Mood stabilizers: protecting the mood . . . protecting the brain.  J Affect Disord. 2004;  79 s15-s20
  • 6 Kim A J, Shi Y, Austin R C et al.. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3.  J Cell Sci. 2005;  118 89-99
  • 7 Werstuck G H, Kim A J, Brenstrum T et al.. Examining the correlations between GSK-3 inhibitory properties and anti-convulsant efficacy of valproate and valproate-related compounds.  Bioorg Med Chem Lett. 2004;  14 5465-5467
  • 8 Hao Y, Creson T, Zhang L et al.. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis.  J Neurosci. 2004;  24 6590-6599
  • 9 Cui S S, Yang C P, Bowen R C et al.. Valproic acid enhances axonal regeneration and recovery of motor function after sciatic nerve axotomy in adult rats.  Brain Res. 2003;  975 229-236
  • 10 Lundborg G, Dahlin L B. Bioartificial nerve graft for bridging extended nerve defects in rat sciatic nerve based on resorbable guiding filaments.  Scand J Plast Reconst Surg Hand Surg. 2000;  34 101-108
  • 11 Hazari A, Wiberg M, JohanssonRuden G. A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair.  Br J Plast Surg. 1999;  52 653-657
  • 12 McElroy S L, Keck Jr P E. In: Schatzberg AF, Nemeroff CB Textbook of Psychopharmacology. Washington, DC; American Psychiatric Press Inc. 1995: 351-375
  • 13 Kury P, Muller H W. Gene expression profiling and molecular aspects in peripheral nerve regeneration.  Restor Neurol Neurosci. 2001;  19 5-18
  • 14 Varejao A S, Meek M F, Ferreira A J et al.. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis.  J Neurosci Methods. 2001;  108 1-9
  • 15 Nishiura Y, Dahlin L B. Functional evaluation after rat sciatic nerve injury followed by hyperbaric oxygen treatment.  J Peripher Nerv Syst. 2002;  7 149-154
  • 16 Encinas M, Iglesias M, Llecha N. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y.  J Neurochem. 1999;  73 1409-1421
  • 17 Kim B, Leventhal P S, Saltiel A R et al.. Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires mitogen-activated protein kinase activation.  J Biol Chem. 1997;  272 21268-21273
  • 18 Chen G, Zeng W Z, Jiang L et al.. The mood stabilizing agents lithium and valproate robustly increase the expression of the neuroprotective protein bcl-2 in the CNS.  J Neurochem. 1999;  72 879-882
  • 19 Wu F, Xing D D, Peng Z R et al.. Effects of valproic acid on motor neuron in spinal cord after sciatic nerve injury in rats.  Med J Wuhan Univ.. 2007;  28 605-607
  • 20 Saito I, Oka Y, Odaka M. Promoting nerve regeneration through long gaps using a small nerve tissue graft.  Surg Neurol. 2003;  59 148-154
  • 21 Riahi R, Casoli V, Martin D et al.. Terminal-lateral nerve anastomoses. Preliminary clinical report of two cases.  Ann Chir Plast Esthet. 2001;  46 129-133
  • 22 Yoshizu T, Tajima T, Narisawa H. The selectivity of regenerating motor and sensory axons.  J Reconstr Microsurg. 1996;  12 547-551
  • 23 Keck J P, McElroy S L, Strakowski S M. Anticonvulsants and antipsychotics in the treatment of bipolar disorder.  J Clin Psychiatry. 1998;  (59 suppl 6) 74-81
  • 24 Löscher W, Frey H H. Kinetics of penetration of common antiepileptic drugs into cerebrospinal fluid.  Epilepsia. 1984;  25 346-352
  • 25 Gould T D, Chen G, Manji H K et al.. In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3.  Neuropsychopharmacology. 2004;  29 32-38
  • 26 Faravelli C, Di Bernardo M, Ricca V, Benvenuti P et al.. Effects of chronic lithium treatment on the peripheral nervous system.  J Clin Psychiatry. 1999;  60 306-310
  • 27 Yuan P, Chen G, Manji H K. Lithium activates the c-Jun NH2-terminal kinases in vitro and in the CNS in vivo.  J Neurochem. 1999;  73 2299-2309
  • 28 Chen D F, Schneider G E, Martinou J C et al.. Bcl-2 promotes regeneration of severed axons in mammalian CNS.  Nature. 1997;  385 434-439
  • 29 Cheng C, Zochodne D W. In vivo proliferation, migration and phenotypic changes of Schwann cells in the presence of myelinated fibers.  Neuroscience. 2002;  115 321-329
  • 30 Fryer R H, Kaplan D R, Kromer L F. Truncated trkB receptors on nonneuronal cells inhibit BDNF-induced neurite outgrowth in vitro.  Exp Neurol. 1997;  148 616-627
  • 31 Manji H K, Moore G J, Chen G et al.. Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness.  J Clin Psychiatry. 2000;  (61 suppl 9) 82-96
  • 32 Cheng C, Zochodne D W. In vivo proliferation, migration and phenotypic changes of Schwann cells in the presence of myelinated fibers.  Neuroscience. 2002;  115 321-329
  • 33 Kury P, Muller H W. Gene expression profiling and molecular aspects in peripheral nerve regeneration.  Restor Neurol Neurosci. 2001;  19 5-18
  • 34 Pardridge W M, Kang Y S, Buciak J L. Transport of human recombinant drain-derived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery.  Pharm Res. 1994;  11 738-746
  • 35 Poduslo J F, Curran G L. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF.  Brain Res Mol Brain Res. 1996;  36 280-286
  • 36 Frey H H, Loscher W. Distribution of valproate across the interface between blood and cerebrospinal fluid.  Neuropharmacology. 1978;  17 637-642
  • 37 Poduslo J F, Curran G L. Glycation increases the permeability of proteins across the blood-nerve and blood-brain barriers.  Brain Res Mol Brain Res. 1994;  23 157-162
  • 38 Bruno V, Sortino M A, Scapagnini U et al.. Antidegenerative effects of Mg(2 + ) valproate in cultured cerebellar neurons.  Funct Neurol. 1995;  10 121-130

Fei WuM.D. 

Department of Hand Surgery and Microsurgery, Pu Ai Hospital of Huazhong University of Science and Technology

Wuhan City, Hu Bei Province, 430033, People's Republic of China