Subscribe to RSS

DOI: 10.1186/1749-7221-8-4
Cortical plasticity induced by different degrees of peripheral nerve injuries: a rat functional magnetic resonance imaging study under 9.4 Tesla[*]
Subject Editor:
Publication History
29 October 2012
25 April 2013
Publication Date:
25 September 2014 (online)

Abstract
Background Major peripheral nerve injuries not only result in local deficits but may also cause distal atrophy of target muscles or permanent loss of sensation. Likewise, these injuries have been shown to instigate long-lasting central cortical reorganization.
Methods Cortical plasticity changes induced after various types of major peripheral nerve injury using an electrical stimulation technique to the rat upper extremity and functional magnetic resonance imaging (fMRI) were examined. Studies were completed out immediately after injury (acute stage) and at two weeks (subacute stage) to evaluate time affect on plasticity.
Results After right-side median nerve transection, cortical representation of activation of the right-side ulnar nerve expanded intra-hemispherically into the cortical region that had been occupied by the median nerve representation After unilateral transection of both median and ulnar nerves, cortical representation of activation of the radial nerve on the same side of the body also demonstrated intra-hemispheric expansion. However, simultaneous electrical stimulation of the contralateral uninjured median and ulnar nerves resulted in a representation that had expanded both intra- and inter-hemispherically into the cortical region previously occupied by the two transected nerve representations.
Conclusions After major peripheral nerve injury, an adjacent nerve, with similar function to the injured nerve, may become significantly over-activated in the cortex when stimulated. This results in intra-hemispheric cortical expansion as the only component of cortical plasticity. When all nerves responsible for a certain function are injured, the same nerves on the contralateral side of the body are affected and become significantly over-activated during a task. Both intra- and inter-hemispheric cortical expansion exist, while the latter dominates cortical plasticity.
Keywords
Functional magnetic resonance imaging (fMRI) - Cortical plasticity - Peripheral nervous system (PNS) - Central nervous system - Nerve injury - BOLD*This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
-
References
- 1 Dreissen JJ. Peripheral nerve injuries: microsurgical repair with interfascicular autografts. Clin Neurol Neurosurg 1975; 77: 128-135 1132212
- 2 Flores LP. Functional assessment of C-5 ventral rootlets by intraoperative electrical stimulation of the supraclavicular segment of the long thoracic nerve during brachial plexus surgery. J Neurosurg 2008; 108: 533-540 10.3171/JNS/2008/108/3/0533 18312101
- 3 Miyamaru S, Kumai Y, Ito T, Yumoto E. Effects of long-term denervation on the rat thyroarytenoid muscle. Laryngoscope 2008; 118: 1318-1323 10.1097/MLG.0b013e31816f693f 18425051
- 4 Taras JS, Jacoby SM. Repair of lacerated peripheral nerves with nerve conduits. Tech Hand Up Extrem Surg 2008; 12: 100-106 10.1097/BTH.0b013e31815e6334 18528237
- 5 Xu QG, Midha R, Martinez JA, Guo GF, Zochodne DW. Facilitated sprouting in a peripheral nerve injury. Neuroscience 2008; 152: 877-887 10.1016/j.neuroscience.2008.01.060 18358630
- 6 Beaulieu JY, Blustajn J, Teboul F, Baud P, De Schonen S, Thiebaud JB, Oberlin C. Cerebral plasticity in crossed C7 grafts of the brachial plexus: An fMRI study. Microsurgery 2006; 26: 303-310 10.1002/micr.20243 16671052
- 7 Gu YD, Zhang GM, Chen DS, Yan J-G, Cheng XM, Chen L. Seventh cervical nerve root transfer from the contralateral healthy side for treatment of brachial plexus root avulsion. J Hand Surg [Br] 1992; 17: 518-521
- 8 Millesi H, Meissl G, Berger A. Further experience with interfascicular grafting of the median, ulnar, and radial nerves. J Bone Joint Surg Am 1976; 58: 209-218 767344
- 9 Adachi K, Lee JC, Hu JW, Yao D, Sessle BJ. Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res 2007; 24: 97-109 10.1080/08990220701470451 17853058
- 10 Lundborg G. Brain plasticity and hand surgery: an overview. J Hand Surg Br 2000; 25: 242-252 10961548
- 11 Lundborg G. Richard P. Bunge memorial lecture. Nerve injury and repair--a challenge to the plastic brain. J Peripher Nerv Syst 2003; Dec;8 (4) 209-226
- 12 Navarro X, Vivo M, Valero-Cabre A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82: 163-201 10.1016/j.pneurobio.2007.06.005 17643733
- 13 Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 1996; 75: 2144-2149 8734610
- 14 Pelled G. MRI of neuronal plasticity in rodent models. Methods Mol Biol 2011; 711: 567-578 10.1007/978-1-61737-992-5_29 21279623
- 15 Pelled G, Chuang KH, Dodd SJ, Koretsky AP. Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve deafferentation. Neuroimage 2007; 37: 262-273 10.1016/j.neuroimage.2007.03.069 2253720 17544301
- 16 Cho YR, Pawela CP, Li R, Kao D, Schulte ML, Runquist ML, Yan J-G, Matloub HS, Jaradeh SS, Hudetz AG, Hyde JS. Refining the sensory and motor ratunculus of the rat upper extremity using fMRI and direct nerve stimulation. Magn Reson Med 2007; 58: 901-909 10.1002/mrm.21408 2519801 17969116
- 17 Chen CJ, Liu HL, Wei FC, Chu NS. Functional MR imaging of the human sensorimotor cortex after toe-to-finger transplantation. Am J Neuroradiol 2006; 27: 1617-1621 16971598
- 18 Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14: 68-78 10.1002/mrm.1910140108 2161986
- 19 Pauling L, Coryell C. The magnetic properties and structure of hemoglobin, oxyhemoglobin, and carbon monooxyhemoglobin. Proc Natl Acad Sci USA 1936; 22: 210-216 10.1073/pnas.22.4.210 1076743 16577697
- 20 Pawela CP, Biswal BB, Hudetz AG, Li R, Jones SR, Cho YR, Matloub HS, Hyde JS. Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage 2010; 49: 2467-2478 10.1016/j.neuroimage.2009.09.054 2818026 19796693
- 21 Pawela CP, Hudetz AG, Ward BD, Schulte ML, Li R, Kao DS, Mauck MC, Cho YR, Neitz J, Hyde JS. Modeling of region-specific fMRI BOLD neurovascular response functions in rat brain reveals residual differences that correlate with the differences in regional evoked potentials. Neuroimage 2008; 41: 525-534 10.1016/j.neuroimage.2008.02.022 2483240 18406628
- 22 Pawela CP, Schulte ML, Cho YR, Li R, Hudetz AG, Hyde JS. Comparing rodent forepaw stimulation under two levels of Domitor anesthesia using laser Doppler and fMRI at 9.4T [abstract]. Proc Intl Soc Mag Reson Med 2007; 15: 3216
- 23 Sommers MG, Pikkemaat JA, Booij LHDJ, Heerschap A. Improved anesthesia protocols for fMRI studies in rats: The use of medetomidine for stable, reversible sedation [abstract]. Proc Intl Soc Mag Reson Med 2002; 10: 393
- 24 Weber R, Ramos-Cabrer P, Wiedermann D, van Camp N, Hoehn M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 2006; 29: 1303-1310 10.1016/j.neuroimage.2005.08.028 16223588
- 25 Van Camp N, Verhoye M, Van der Linden A. Stimulation of the rat somatosensory cortex at different frequencies and pulse widths. NMR Biomed 2006; 19: 10-17 10.1002/nbm.986 16408324
- 26 Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841 10.1006/nimg.2002.1132 12377157
- 27 Cox RW, Hyde JS. Software tools for analysis and visualization of fMRI data. NMR Biomed 1997; 10: 171-178 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L 9430344
- 28 Paxinos G, Watson C. The Rat brain in stereotaxic coordinates. Elsevier; Boston: 2005
- 29 Chudler EH, Dong WK. The role of the basal ganglia in nociception and pain. Pain 1995; 60: 3-38 10.1016/0304-3959(94)00172-B 7715939
- 30 Lebel A, Becerra L, Wallin D, Moulton EA, Morris S, Pendse G, Jasciewicz J, Stein M, Aiello-Lammens M, Grant E et al: fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain 2008; 131: 1854-1879 10.1093/brain/awn123 18567621
- 31 Shih YY, Chen CC, Shyu BC, Lin ZJ, Chiang YC, Jaw FS, Chen YY, Chang C. A new scenario for negative functional magnetic resonance imaging signals: endogenous neurotransmission. J Neurosci 2009; 29: 3036-3044 10.1523/JNEUROSCI.3447-08.2009 19279240
- 32 Zhang Y, Yang C, Xu X, Jiao R, Jin H, Lv Y, Yang H, Xu M. Morphine dependence changes the role of droperidol on pain-related electric activities in caudate nucleus. Biochem Biophys Res Commun 2008; 372: 179-185 10.1016/j.bbrc.2008.05.009 18474221
- 33 Lundborg G, Björkman A, Rosén B. Enhanced sensory relearning after nerve repair by using repeated forearm anaesthesia: aspects on time dynamics of treatment. Acta Neurochir Suppl. 2007; 100: 121-126 10.1007/978-3-211-72958-8_26 17985560
- 34 Wall JT, Kaas JH, Sur M, Nelson RJ, Felleman DJ, Merzenich MM. Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. J Neurosci 1986; 6: 218-233 3944620
- 35 Almquist EE, Smith OA, Fry L. Nerve conduction velocity, microscopic, and electron microscopy studies comparing repaired adult and baby monkey median nerves. J Hand Surg [Am] 1983; 8: 406-410
- 36 Birch R, Raji AR. Repair of median and ulnar nerves. Primary suture is best. J Bone Joint Surg Br 1991; 73: 154-157 1991753
- 37 Rosén B, Lundborg G. Sensory re-education after nerve repair: aspects of timing. Handchir Mikrochir Plast Chir 2004; Feb;36 (1) 8-12
- 38 Dellon AL. Evaluation of sensibility and reeducation of sensation in the hand. Williams & Wilkins; Baltimore: 1981
- 39 Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 1996; 16: 785-807 8551360
- 40 Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 2002; 3: 228-236 11994754
- 41 Johansson BB, Grabowski M. Functional recovery after brain infarction: plasticity and neural transplantation. Brain Pathol 1994; 4: 85-95 7912982
- 42 Sutton RL, Feeny DM. Alpha-noradrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat. Restor Neurol Neurosci 1992; 4: 1-11 21551648
- 43 Bjorkman A, Rosen B, Lundborg G. Acute improvement of hand sensibility after selective ipsilateral cutaneous forearm anaesthesia. Eur J Neurosci 2004; 20: 2733-2736 10.1111/j.1460-9568.2004.03742.x 15548216
- 44 Calford MB, Tweedale R. Interhemispheric transfer of plasticity in the cerebral cortex. Science 1990; 249: 805-807 10.1126/science.2389146 2389146
- 45 Woolsey TA. Should one hand (paw) really not know what the other is doing? Focus on “reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats”.[comment]. J Neurophysiol 2005; 94: 1666-1667 10.1152/jn.00518.2005 16105953
- 46 Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 1994; 368: 737-740 10.1038/368737a0 8152484
- 47 Yamahachi H, Marik SA, McManus JN, Denk W, Gilbert CD. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 2009; 64: 719-729 10.1016/j.neuron.2009.11.026 2818836 20005827
- 48 Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 1984; 224: 591-605 10.1002/cne.902240408 6725633
- 49 Rasmusson DD. Reorganization of raccoon somatosensory cortex following removal of the fifth digit. J Comp Neurol 1982; 205: 313-326 10.1002/cne.902050402 7096623
- 50 Takeuchi N, Oouchida Y, Izumi S. Motor control and neural plasticity through interhemispheric interactions. Neural Plast 2012; 2012: 823285 3541646 23326685
- 51 Pawela CP BB, Hudetz AG, Li R, Jones SR, Cho YR, Matloub HS, Hyde JS. Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage 2010; 49 (3) 2467-2478 10.1016/j.neuroimage.2009.09.054 2818026 19796693
- 52 Humphrey CD, Kriet JD. Nerve repair and cable grafting for facial paralysis. Facial Plast Surg 2008; 24: 170-176 10.1055/s-2008-1075832 18470828
- 53 Samardzic MM, Rasulic LG, Grujicic DM. Results of cable graft technique in repair of large nerve trunk lesions. Acta Neurochir (Wien) 1998; 140: 1177-1182 10.1007/s007010050234
- 54 Bertelli JA, Ghizoni MF. Contralateral motor rootlets and ipsilateral nerve transfers in brachial plexus reconstruction. J Neurosurg 2004; 101: 770-778 10.3171/jns.2004.101.5.0770 15540915
- 55 Moneim MS. Interfascicular nerve grafting. Clin Orthop Relat Res 1982; Mar (163) 65-74
- 56 Venkatramani H, Bhardwaj P, Faruquee SR, Sabapathy SR. Functional outcome of nerve transfer for restoration of shoulder and elbow function in upper brachial plexus injury. J Brachial Plex Peripher Nerve Inj 2008; 3: 15 10.1186/1749-7221-3-15 2432056 18505571
- 57 Ahmad A, Barrington S, Maisey M, Rubens RD. Use of positron emission tomography in evaluation of brachial plexopathy in breast cancer patients. Br J Cancer 1999; 79: 478-482 10.1038/sj.bjc.6690074 2362404 10027316
- 58 Leechavengvongs S, Witoonchart K, Uerpairojkit C, Thuvasethakul P, Ketmalasiri W. Nerve transfer to biceps muscle using a part of the ulnar nerve in brachial plexus injury (upper arm type): A report of 32 cases. J Hand Surg Am 1998; 23: 711-716 10.1016/S0363-5023(98)80059-2 9708387
- 59 Oberlin C, Béal D, Leechavengvongs S, Salon A, Dauge MC, Sarcy JJ. Nerve transfer to biceps muscle using a part of ulnar nerve for C5-C6 avulsion of the brachial plexus: Anatomical study and report of four cases. J Hand Surg Am 1994; 19: 232-237 10.1016/0363-5023(94)90011-6 8201186