Nuklearmedizin 2011; 50(03): 134-140
DOI: 10.3413/Nukmed-0334-10-07
Original article
Schattauer GmbH

99mTc-prulifloxacin in artificially infected animals

Radiosynthesis and biological evaluation 99mTc-Prulifloxacin bei artifiziell infizierten Tieren - Radiosynthese und biologische Bewertung
S. Q. Shah
1   Nuclear Medicine Research Laboratory (NMRL), University of Peshawar, NWFP, Pakistan
,
A. U. Khan
2   Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan
,
M. R. Khan
3   Phytopharmaceutical & Neutraceuticals Research Laboratory (PNRL), University of Peshawar, NWFP, Pakistan
› Author Affiliations
Further Information

Publication History

received: 17 July 2010

accepted in revised form: 10 January 2011

Publication Date:
28 December 2017 (online)

Summary

Aim: The radiosynthesis of 99mTc-Prulifloxacin (99mTc-PRN) was assessed in terms of stability, binding with Staphylococcus aureus (S. aureus), biodistribution in rats (RT) and scintigraphic profile in rabbits (RB). Animals, material, methods: 99mTc-PRN was synthesized by mixing 25 μg of stannous fluoride (SnF2) with 18.5 MB of sodium pertechnetate. Thereafter, 0.5 mg of the prufloxacin (PRN) was added to the reaction mixture and the pH was set at 5.1 with 0.01 mol/l HCl. The reaction mixture was incubated at room temperature. The same process was repeated by increasing the concentration of the stannous fluoride from 25 to 250 μg, sodium pertechnetate from 18,5 to 185 MBq and the PRN from 0.5 to 5 mg. The radiochemical stability of the 99mTc-PRN was investigated in higher concentration of the cystein. In-vitro binding investigation was performed using living and heat killed S. aureus to verify specificity of the 99mTc-PRN. Biodistribution was evaluated in artificially infected rats and scintigraphic precision in rabbits at different interval. Results: The 99mTc-RPN prepared by mixing 2 mg of PRN, 74 MBq sodium pertechnetate, 100 μg stannous fluoride at pH 5.4, appeared to be more than 90% stable with a maximum radiochemical yield of 98.15 ± 0.25% at 30 min. The 99mTc-PRN showed higher stability in serum and satisfactory in-vitro binding to living as compared to heat killed S. aureus. 14.25 ± 0.15% of the injected dose was accumulated in the infected muscle of the model RT. Infected to normal muscle ratio was 5.12 and inflamed to normal muscle was 1.2. The biodistribution was validated by the scintigraphic localization of infection in rabbits. Conclusion: This investigation of 99mTc-PRN confirmed its momentous radiochemical immovability in saline, serum, preferential in-vitro binding to living bacteria, higher uptake in the infected muscle of model RT and precise localization in the infected muscle of model RB.

Zusammenfassung

Ziel: Die Radiosynthese von 99mTc-Prulifloxacin (99mTc-PRN) wurde in Hinblick auf Stabilität, Bindung an Staphylococcus aureus (S. aureus), Bioverteilung in Ratten (RT) und szintigraphisches Profil in Kaninchen (RB) untersucht. Tiere, Material und Methoden: 99mTc-PRN wurde durch Mischung von 25 μg Zinnfluorid (SnF2) mit 18,5 MBq Natrium-Pertechnetat synthetisiert. Danach wurden dem Reaktionsgemisch 0,5 mg Prulifloxacin (PRN) hinzugefügt, der pH-Wert wurde mit 0,01 mol/l HCl auf 5,1 eingestellt und das Reaktionsgemisch bei Raumtemperatur inkubiert. Unter Erhöhung der Zinnfluorid- (von 25 auf 250 μg), Natrium-Pertechnetat- (18,5 auf 185 MBq) und PRN-Konzentrationen (von 0,5 auf 5 mg) wurde der gleiche Prozess wiederholt. Die radiochemische Stabilität wurde bei den höheren Cysteinkonzentrationen untersucht. Die In-vitro- Bindung wurde in lebenden und durch Hitze abgetöteten S. aureus untersucht, um die Spezifität des 99mTc-PRN zu prüfen. Die Bioverteilung wurde in artifiziell infizierten Ratten und die szintigraphische Genauigkeit in Kaninchen in unterschiedlichen Zeitabständen beurteilt. Ergebnisse: Das aus 2 mg PRN, 74 MBq Natrium-Pertechnetat und 100 μg Zinnfluorid bei einem pH von 5,4 hergestellte 99mTc-PRN schien zu mehr als 90% stabil zu sein, mit einer radiochemischen Ausbeute von 98,15 ± 0,25% nach 30 min. 99mTc-PRN zeigte im Serum eine höhere Stabilität und die In-vitro- Bindung an lebende S. aureus war zufriedenstellender als an hitzegetötete. Im Rattenmodell wurden 14,25 ± 0,15% der injizierten Dosis im infizierten Muskel angereichert. Das Verhältnis infizierter zu normalem Muskel lag bei 5,12 und entzündeter zu normalem Muskel bei 1,2. Die Bioverteilung wurde mittels szintigraphischer Infektionslokalisation in Kaninchen überprüft. Schlussfolgerung: Diese Untersuchung des 99mTc-PRN bestätigt seine bedeutende radiochemische Unbeweglichkeit in Kochsalzlösung und Serum, seine In-vitro- Bindung vorzugsweise an lebende Bakterien, die höhere Aufnahme in infiziertem Muskel im Rattenmodell und die präzise Lokalisierung im infizierten Muskel im Kaninchenmodell.

 
  • References

  • 1 Bandoli G, Dolmella A, Porchia M. et al. Structural overview of technetium compounds (1993–1999). Coord Chem Rev 2001; 214: 43-90.
  • 2 Basu S, Chryssikos T, Moghadam-Kia S. et al. Positron emission tomography as a diagnostic tool in infection: Present role and future possibilities. Semin Nucl Med 2009; 39: 36-51.
  • 3 Boschi A, Duatti A, Uccelli L. Development of technetium-99m and rhenium-188 radiopharmacueticals containing a terminal metal-nitrido multiple bond for diagnosis and therapy. Top Curr Chem 2005; 252: 85-115.
  • 4 Bruggen W, Bleeker-Rovers CP, Boerman OC. et al. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: A systematic review. Semin Nucl Med 2010; 40: 3-15.
  • 5 Buscombe JR, Miller RF, Lui D. et al. Combined gallium-67 citrate and human immune-immunoglobulin imaging in human immune-deficiency virus positive patients with fever of unknown origin. Nucl Med Commun 1991; 12: 583-592.
  • 6 Chattopadhyay S, Das SS, Chandra S. et al. Synthesis and evaluation of 99mTc-moxifloxacin, a potential infection specific imaging agent. Appl Radiat Isotop 2010; 68: 314-316.
  • 7 El-Ghany EA, EL-Kolaly MT, Amine AM. et al. Synthesis of 99mTc-pefloxacin: A new targeting agent for infectious foci. J Radioanal Nucl Chem 2005; 266: 131-133.
  • 8 Kleisner I, Komarek P, Komarkova I, Konopkova M. A new technique of 99mTc-ciprofloxacin kit preparation. Nuklearmedizin 2002; 41: 224-229.
  • 9 Lacroixa P, Crumbb WJ, Durandoc L. et al. Prulifloxacin: in vitro (HERG current) and in vivo (conscious dog) assessment of cardiac risk. Eur J Pharm 2003; 477: 69-72.
  • 10 Lambrecht FY, Yilmaz O, Unak P. et al. Evaluation of 99mTc-cefuroxime axetil for imaging of inflammation. J Radioanal Nucl Chem 2008; 277: 491-493.
  • 11 Lixia G, Meiling Q, Xin J. et al. Determination of active metabolites of prulifloxacin in human serum plasma by liquid chromatography- tandem mass spectrometry. J Chromatography B 2006; 832: 280-285.
  • 12 Motaleb M A. Preparation and biodistribution of 99mTc-lomefloxacin and 99mTc-ofloxacin complexes. J Radioanal Nucl Chem 2007; 272: 95-99.
  • 13 Motaleb MA. Preparation of 99mTc-cefoperazone complex, a novel agent for detecting sites of infection. J Radioanal Nucl Chem 2007; 272: 167-169.
  • 14 Motaleb MA. Preparation, quality control and stability of 99mTc-sparafloxacin complex, a novel agent for detecting sites of infection. J Label Compd Radiopharm 2009; 52: 415-418.
  • 15 Qaiser SS, Khan AU, Khan MR. Synthesis, biodistribution and evaluation of 99mTc-sitafloxacin kit: a novel infection imaging agent. J Radioanal Nucl Chem 2010; 284: 189-191.
  • 16 Roohi S, Mushtaq A, Jehangir M. et al. Synthesis, quality control and biodistribution of 99mTc-kanamycin. J Radioanal Nucl Chem 2006; 267: 561-564.
  • 17 Sarda L, Crémieux A, Lebellec Y. et al. Inability of 99mTc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. J Nucl Med 2003; 44: 920-926.
  • 18 Seabold JE, Forstrom LA, Schauwecker DS. et al. Procedure guidelines for indium-111 leukocyte scintigraphy for suspected infection/ inflammation. J Nucl Med 1997; 38: 997-1001.
  • 19 Seabold JE, Palestro CJ, Brown ML. et al. Procedure guidelines for gallium scintigraphy in inflammation. J Nucl Med 1997; 38: 994-997.
  • 20 Shah SQ, Khan AU, Khan MR. Radiosynthesis and biodistribution of 99mTc-rifampicin: A novel radiotracer for in-vivo infection imaging. Appl Radiat Isot 68: 2255.
  • 21 Shah SQ. Manual of the Nuclear Medicine Research Laboratory Part-I & II. 2004
  • 22 Welling MM, Paulusma-Annema A, Batler HS. et al. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 2000; 27: 292-301.
  • 23 Zhang J, Guo H, Zhang S. et al. Synthesis and biodistribution of a novel 99mTcN complex of ciprofloxacin dithocarbamate as a potential agent for infection imaging. Bioinorg Med Chem Lett 2008; 18: 5168-5170.
  • 24 Zhang J, Zhang S, Guo H, Wang X. Synthesis and biodistribution of a novel 99mTc(CO3) complex of ciprofloxacin dithocarbamate as a potential agent to target infection. Bioinorg Med Chem Lett 2010; 20: 3781-3784.