Hamostaseologie 2011; 31(04): 243-250
DOI: 10.5482/ha-1165
Review
Schattauer GmbH

Phospholipid inhibitors

State of the ArtPhospholipid-InhibitorenState-of-the-Art
M. Galli
1   Divisione di Ematologia, Ospedali Riuniti, Bergamo, Italy
› Author Affiliations
Further Information

Publication History

received: 16 June 2011

accepted: 08 July 2011

Publication Date:
27 December 2017 (online)

Summary

The antiphospholipid syndrome (APS) is defined by the association of arterial and/or venous thrombosis and/or pregnancy complications with the presence of at least one among the main antiphospholipid antibodies (aPL) (i. e., Lupus anticoagulants, LA, IgG and/ or IgM anticardiolipin antibodies, aCL, IgG and/or IgM antiβ2-glycoprotein I antibodies, aβ2-GPI). Several clinical studies have consistently reported that LA is a stronger risk factor for both arterial and venous thrombosis compared to aCL and aβ2-GPI. In particular, LA activity dependent on the first domain of β2-GPI and triple aPL positivity are associated with the risk of thrombosis and obstetrical complications.

Asymptomatic aPL-positive subjects do not require primary thromboprophylaxis. Venous thromboembolism is the most common initial clinical manifestation of APS. To prevent its recurrence indefinite anticoagulation is recommended. Long duration treatment with warfarin or aspirin is used after a first cerebral arterial thrombosis. Low molecular weight heparin (LMWH) with or without aspirin is recommended to reduce the rate of obstetrical complications of APS pregnant women.

Zusammenfassung

Das Antiphospholipid-Syndrom (APS) ist definiert als die Kombination aus arteriellen und/ oder venösen Thrombosen und/oder Schwangerschaftskomplikationen und Vorhandensein von mindestens einem der wichtigsten Antiphospholipid-Antikörper (aPL), d. h. Lupus-Antikoagulans (LA) IgG-und/oder IgM-Anti-Cardiolipin-Antikörper (aCL), IgG-und/oder IgMAnti-β2-Glykoprotein-I-Antikörper (aβ2-GPI). Verschiedene klinische Studien ergaben übereinstimmend, dass LA verglichen mit aCL und aβ2-GPI der stärkere Risikofaktor für arterielle sowie venöse Thrombosen ist. Insbesondere sind die von Domäne I des β2-GPI-abhängige LA-Aktivität sowie dreifach positive aPL mit dem Risiko für Thrombosen und geburtshilfliche Komplikationen assoziiert.

Asymptomatische aPL-positive Patienten benötigen keine primäre Thromboseprophylaxe. Venöse Thromboembolien sind die häufigste klinische Erstmanifestation des APS. Zur Rezidivprophylaxe wird eine zeitlich unbegrenzte Antikoagulation empfohlen. Nach einer ersten zerebralen arteriellen Thrombose erfolgt die Langzeitbehandlung mit Warfarin oder ASS. Niedermolekulares Heparin (LMWH) mit oder ohne ASS wird zur Reduktion der geburtshilflichen Komplikationsrate bei schwangeren APS-Patientinnen empfohlen.

 
  • References

  • 1 Miyakis S, Lockshin MD, Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome. J Thromb Haemost 2006; 04: 295-306.
  • 2 Pengo V, Tripodi A, Reber G. et al. Update of the guidelines for lupus anticoagulant detection. Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost 2009; 07: 1737-1740.
  • 3 Cervera R, Piette JC, Font J. et al. Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum 2002; 46: 1019-1027.
  • 4 Cervera R, Khamashta MA, Shoenfeld Y. et al. Morbidity and mortality in the antiphospholipid syndrome during a 5-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis 2009; 68: 1428-1432.
  • 5 Cervera R on behalf of the ‘CAPS Registry’. Catastrophic Antiphospholipid Syndrome (CAPS0). Lupus 2010; 19: 412-418.
  • 6 Piette JC, Cervera R, Levy R. et al. The catastrophic antiphospholipid syndrome – Asherson’s syndrome. Ann Med Intern 2003; 154: 95-96.
  • 7 Tincani A, Filippini M, Scarsi M. et al. European attempts for the standardisation of the antiphospholipid antibodies. Lupus 2009; 18: 913-919.
  • 8 Tincani A, Allegri F, Balestrieri G. et al. Minimal requirements for antiphospholipid antibodies ELISAs proposed by the European Forum on antiphospholipid antibodies. Thromb Res 2004; 114: 553-558.
  • 9 Wong RCW, Gillis D, Adelstein S. et al. Consensus guidelines on anti-cardiolipin antibody testing and reporting. Pathology 2004; 36: 63-68.
  • 10 Reber G, Shousboe I, Ticani A. et al. Inter-laboratory variability of anti-beta2-glycoprotein I measurement. Thromb Haemost 2002; 88: 66-73.
  • 11 Reber G, Tincani A, Sanmarco M. et al. Variability of anti-beta2-gycoprotein I antibodies measurement by commercial assays. Thromb Haemost 2005; 94: 665-672.
  • 12 Reber G, Tincani A, Sanmarco M. et al. Proposal for the measurement of anti-beta2-gycoprotein I antibodies. Standardization group of the European Forum on antiphospholipid antibodies. J Thromb Haemost 2004; 02: 1860-1862.
  • 13 McNeil HP, Simpson RJ, Chesterman CN, Krilis SA. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: β2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci USA 1990; 87: 4120-4124.
  • 14 Galli M, Comfurius P, Maassen C. et al. Anticardio-lipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 1990; 334: 1544-1547.
  • 15 Matsuura E, Igarashi Y, Fujimoto M. et al. Anticardiolipin cofactor(s) and differential diagnosis of autoimmune disease. Lancet 1990; 336: 177-178.
  • 16 De Laat BH, Derksen RHWM, van Lummel M. et al. Pathogenic anti-β2-glycoprotein I antibodies recognize β2-glycoprotein I only after a conformational change. Blood 2006; 107: 1916-1924.
  • 17 De Laat BH, Derksen RHWM, Ubanus RT. et al. β2GPI-dependent lupus anticoagulant activity highly correlates with thrombosis in the antiphospholipid syndrome. Blood 2004; 104: 3598-3602.
  • 18 De Laat BH, Derksen RHWM, Ubanus RT. et al. IgG antibodies that recognize the epitope Gly40-Arg43 in domain I of β2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood 2005; 105: 1540-1545.
  • 19 Galli M. The antiphospholipid triangle. J Thromb Haemost 2010; 08: 234-236.
  • 20 Simmelink MJ, Derksen RHW, Arnout J, de Groot P. A simple method to discriminate between β2GPIdependentand prothrombin-dependent lupus anticoagulants. J Thromb Haemost 2003; 01: 740-747.
  • 21 Pengo V, Biasiolo A, Pegoraro C, Iliceto S. A twostep coagulation test to identify anti- β2-glycoprotein I lupus anticoagulants. J Thromb Haemost 2004; 02: 702-707.
  • 22 Devreese K. A functional coagulation test to identify anti-β2-glycoprotein I-dependent lupus anticoagulants. Thromb Res 2007; 119: 753-759.
  • 23 Galli M, Beretta G, Daldossi M. et al. Different anticoagulant and immunological properties of antiprothrombin antibodies in patients with antiphospholipid antiobides. Thromb Haemost 1997; 77: 486-491.
  • 24 Bevers EM, Galli M, Barbui T. et al. Lupus anticoagulant IgG’s are not directed to phospholipids only but to a complex of lipid-bound human prothrombin. Thromb Haemost 1991; 66: 629-632.
  • 25 Horbach DA, van Oort E, Derksen RHWM, de Groot P. The contribution of anti-prothrombinantibodies to lupus anticoagulant activity--discrimination between functional and non-functional anti-prothrombin-antibodies. Thromb Haemost 1998; 79: 790-795.
  • 26 Galli M, Luciani D, Bertolini G, Barbui T. Lupus anticoagulants are stronger risk factors of thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood 2003; 101: 1827-1832.
  • 27 Galli M, Luciani D, Bertolini G, Barbui T. Antiβ2-glycoprotein I, antiprothrombin antibodies and the risk of thrombosis in the antiphospholipid syndrome. Blood 2003; 102: 2717-2723.
  • 28 Opatrny L, David M, Khan SR. et al. Association between antiphospholipid antibodies and recurrent fetal loss in omen without autoimmune diseases: a metaanalysis. J Rheumatol 2006; 33: 2214-2221.
  • 29 Previtali S, Barbui T, Galli M. Anti-β2-glycoprotein I and antiprothrombin antibodies in antiphospholipid-negative patients with thrombosis. A casecontrol study. Thromb Haemost 2002; 88: 729-732.
  • 30 Pengo V, Biasiolo A, Pegoraro C. et al. Antibody profiles for the diagnosis of antiphospholipid syndrome. Thromb Haemost 2005; 93: 1147-1152.
  • 31 Ruffatti A, Tonello M, Del Ross T. et al. Antibody profile and clinical course in primary antiphos-pholipid syndrome with pregnancy morbidity. Thromb Haemost 2006; 96: 337-341.
  • 32 Pengo V, Ruffatti A, Legnani C. et al. Clinical course of high-risk patients diagnosed with antiphos-pholipid sindrome. J Thromb Haemost 2010; 08: 237-242.
  • 33 Lee EY, Chang-Keun L, Lee TH. et al. Does the anti-β2-glycoprotein I antibody provide additional information in patients with thrombosis?. Thromb Res 2003; 111: 29-32.
  • 34 Male C, Foulon D, Hogendoorn H. et al. Predictive values of persistent versus transient antiphospholipid antibody subtypes for the risk of thrombotic events in pediatric patients with systemic lupus erythematosus. Blood 2005; 106: 4152-4158.
  • 35 Forastiero R, Martinuzzo M, Pombo G. et al. A prospective study of antibodies to β2-GPI and prothrombin and risk of thrombosis. J Thromb Haemost 2005; 03: 1231-1238.
  • 36 De Laat B, Pengo V, Pabinger I. The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost 2009; 07: 1767-7173.
  • 37 Reverter JC, Tassies D, Font J. et al. Hypercoagulable state in patients with antiphospholipid syndrome is related to high induced tissue factor expression on monocytes and to low free proteins. Arterioscler Thromb Vasc Biol 1996; 16: 1319-1326.
  • 38 Wu XX, Pierangeli SS, Rand JH. Resistance to annexin A5 binding and anticoagulant activity in the plasma of patients with the antiphospholipid syndrome but not with syphilis. J Thromb Haemost 2006; 04: 271-273.
  • 39 Devreese K, Peerlinck K, Arnout J, Hoylaerts FS. Laboratory detection of antiphospholipid syndrome via automated thrombography. Thromb Haemost 2009; 101: 185-196.
  • 40 Pierangeli SS, Colden-Stanfiled M, Liu X. et al. Antiphospholipid antibodies from antiphospholipid syndrome patients activated endothelial cells in vitro and in vivo. Circulation 1999; 99: 19997-2002.
  • 41 Lopez-Pedrera C, Buendia P, Cuadrado MJ. et al. Antiphospholipid antibodies from patients with the antiphospholipid sindrome induce monocyte tissue factor expression through the simultaneous activation of NF-kappa B/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum 2006; 54: 301-311.
  • 42 Shi T, Giannakopoulos B, Yan X. et al. Antibeta2-glycoprotein I in complex with beta2-glycoprotein I can activate platelets in a dysregulated manner via glycoprotein Ib-IX-V. Arthritis Rheum 2006; 54: 2558-2567.
  • 43 Blank M, Cohen J, Toder V, Shoenfeld Y. Induction of anti-phospholipid syndrome in naive mice with mouse lupus monoclonal and human polyclonal anti-cardiolipin antibodies. Proc Natl Acad Sci USA 1991; 88: 3069-3073.
  • 44 Pierangeli SS, Barker JH, Stikovac D. et al. Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost 1994; 71: 670-674.
  • 45 Robertson SA, Roberts CT, van Beijering E. et al. Effect of beta2-glycoprotein I null mutation on reproductive outcome and antiphospholipid antibodymediated pregnancy pathology in mice. Mol Hum Reprod 2004; 10: 409-416.
  • 46 Ramesh S, Morrell CN, Tarango C. et al. Antiphos-pholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via ß2GPI and apoER2. J Clin Invest 2011; 121: 120-131.
  • 47 Shoenfeld Y. Induction of experimental primary and secondary antiphospholipid syndromes in naive mice. Am J Reprod Immunol 1992; 28: 219-222.
  • 48 Gharavi AE, Aron AL. Experimental models for antiphospholipid studies. Haemostasis 1994; 24: 204-207.
  • 49 Bevers EM, Jannsen MP, Comfurius P. et al. Quantitative determination of the binding of beta2-glycoprotein I and prothrombin to phosphatidylserineexposing blood platelets. Biochem J 2005; 386: 271-279.
  • 50 Gushiken FC, Le A, Arnett FC, Thiagarajan P. Polymorphisms beta2-glycoprotein I: phospholipids binding and multimeric structure. Thromb Res 2002; 108: 175-180.
  • 51 Cline AM, Radic MZ. Apoptosis, subcellular particles, and autoimmunity. Clin Immunol 2004; 112: 175-182.
  • 52 Levine JS, Subang R, Koh JS, Rauch J. Induction of anti-phospholipid autoantibodies by beta2-glycoprotein I bound to apoptotic thymocytes. J Autoimmun 1998; 11: 413-424.
  • 53 D’Agnillo P, Levine JS, Subang R, Rauch J. Prothrombin binds to the surface of apoptotic, but not viable, cells and serves as a target of lupus anticoagulant autoantibodies. J Immunol 2003; 170: 3408-3422.
  • 54 Levine JS, Subang R, Koh JS, Nasr SH. et al. Immunization with an apoptotic cell-binding protein recapitulates the nephritis and sequential autoantibody emergence of systemic lupus erythematosus. J Immunol 2006; 177: 6504-6516.
  • 55 Blank M, Krause I, Fridkin M. et al. Bacterial induction of autoantibodies to beta2-glycoprotein I accounts for the infectious etiology of antiphospholipid syndrome. J Clin Invest 2002; 109: 797-804.
  • 56 Gharavi AE, Pierangeli SS, Colden-Stanfield M. et al. GDKV-induced antiphospholipid antibodies enhance thrombosis and activate cells in vivo and in vitro. J Autoimm 1999; 163: 2922-2927.
  • 57 Rauch J, Dieudié M, Subang R, Levine JS. The dual role of innate immunity in the antiphospholipid syndrome. Lupus 2010; 19: 347-353.
  • 58 Raschi E, Testoni C, Bosisio D. et al. Role of the MyD88 transduction signalling pathway in endothelial activation by antiphospholipid antibodies. Blood 2003; 101: 3495-3500.
  • 59 Ioannou Y, Rahman A. Domain I of β2-glycoprotein I: its role as an epitope and the potential to be developed as a specific target for the treatment of the antiphospholipid syndrome. Lupus 2010; 19: 400-405.
  • 60 Ioannou Y, Romay-Penabad Z, Pericleous C. et al. In-vivo inhibition of antiphospholipid antibody induced pathogenicity utilizing the antigenic target peptide domain I of β2-glycoprotein I: proof of concept. J Thromb Haemost 2099 07: 833-842.
  • 61 Finazzi G, Brancaccio V, Moia M. et al. Natural history and risk for thrombosis in 360 patients with antiphospholipid antibodies: a four-year prospective study from the Italian Registry. Am J Med 1996; 100: 530-536.
  • 62 Kearon C, Ginsberg JS, Kovacs MJ. et al. Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism. N Engl J Med 2003; 349: 631-639.
  • 63 Finazzi G, Marchioli R, Brancaccio V. et al. A randomized clinical trial of high-intensity warfarin vs. conventional antithrombotic therapy for the prevention of recurrent thrombosis in patients with the antiphospholipid syndrome (WAPS). J Thromb Haemost 2005; 03: 848-853.
  • 64 Crowther MA, Wisloff F. Evidence based treatment of the antiphospholipid syndrome II. Optimal anticoagulant therapy for thrombosis. Thromb Res 2005; 115: 3-8.
  • 65 Lim W, Crowther MA, Eikelboom JW. Management of antiphospholipid antibody syndrome: a systematic review. JAMA 2006; 295: 1050-1057.
  • 66 Levine SR, Brey RL, Tilley BC. et al. Antiphospholipid antibodies and subsequent thrombo-occlusive events in patients with ischemic stroke. JAMA 2004; 291: 576-584.
  • 67 Ruiz-Irastorza G, Hunt BJ, Khamashta MA. A systematic review of secondary thromboprophylaxis in patients with antiphospholipid antibodies. Arthritis Rheum 2007; 57: 1487-1495.
  • 68 Keeling D. Duration of anticoagulation: decision making based on absolute risk. Blood Rev 2006; 20: 173-178.
  • 69 Laskin CA, Spitzer KA, Clark CA. et al. Low molecular weight heparin and aspirin for recurrent pregnancy loss; results from the randomized, controlled, HepASA Trial. J Rheumatol 2009; 36: 279-287.