B&G Bewegungstherapie und Gesundheitssport 2018; 34(02): 82-87
DOI: 10.1055/a-0569-6669
Wissenschaft
© Haug in Georg Thieme Verlag KG Stuttgart · New York

Erfassung der Körperzusammensetzung

Estimating body composition
Steffen CE Schmidt
1   Institut für Sport und Sportwissenschaft, Karlsruhe
,
Janina Krell-Rösch
2   Mayo Clinic, Scottsdale, AZ
› Author Affiliations
Further Information

Publication History

Eingegangen: 02 January 2018

Angenommen durch Review: 08 January 2018

Publication Date:
15 May 2018 (online)

Zusammenfassung

Es existiert eine Vielzahl von Verfahren zur Bestimmung der Körperzusammensetzung. Die verschiedenen Messmethoden sind auf unterschiedlichen Modellen der Körperzusammensetzung begründet und unterscheiden sich teilweise erheblich hinsichtlich Durchführung, Kosten und Gültigkeitsbereich. Der folgende Beitrag gibt eine Übersicht über die gängigsten Verfahren der Bestimmung der Körperzusammensetzung. In Abhängigkeit des Anwendungsbereichs sollten unterschiedliche Faktoren bei der Wahl einer geeigneten Methode berücksichtigt werden.

Summary

To date, many approaches in estimating body composition exist. Different methods rely on different body composition models and may differ widely in their execution, costs and range of validity. The following article gives an overview of the most common methods used to estimate body composition. Dependent on the scope of application, different aspects should be considered when choosing a suitable method.

 
  • Literatur

  • 1 Baumgartner RN, Chumlea WC, Roche AF. Estimation of body composition from bio-lectric impedance of body segments. American Journal of Clinical Nutrition 1989; 50 (02) 221-226
  • 2 Bosy-Westphal A, Later W, Hitze B. et al. Accuracy of Bioelectrical Impedance Consum-er Devices for Measurement of Body Composition in Comparison to Whole Body Magnetic Resonance Imaging and Dual X-Ray Absorptiometry. Obesity Facts 2008; 1 (06) 319-324
  • 3 Davis JA, Dorado S, Keays KA. et al. Reliability and validity of the lung volume measurement made by the BOD POD body composition system. Clinical Physiology and Functional Imaging 2007; 27 (05) 42-46
  • 4 Dittmar M. Reliability and variability of bioimpedance measures in normal adults: Effects of age, gender and body mass. American Journal of Physical Anthropology 2003; 122 (04) 361-370
  • 5 European Society of Cardiology. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. European Heart Journal 2016. DOI:10.1093/eurheartj/ehw106
  • 6 Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children: a review. American Journal of Clinical Nutrition 2002; 75 (03) 453-467
  • 7 Freedman DS, Wang J, Ogden CL. et al. The prediction of body fatness by BMI and skin-fold thicknesses among children and adolescents. Annals of Human Biology 2007; 34 (02) 183-194
  • 8 Going SB. Hydrodensitometrie and Air Displacement Plethysmography. In Heymsfield SB, Lohmann TG, Wang Z. et al (Eds.). Human Body Composition; Champain: Kuman Ki-netics; 2005. 2nd. edition, 17-33
  • 9 Gonzales A, Hartge P, Cerhan J. et al. Body Mass Index and Mortality among 1.46 Mil-lion White Adults. N Engl J Med 2010; 363 (23) 2211-2219
  • 10 Janssen I, Heymsfield SB, Ross R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. JAGS 2002; 50: 889-896
  • 11 Leonard CM, Roza MA, Barr RD. et al. Reproducibility of DXA measurements of bone mineral density and body composition in children. Pediatric Radiology 2009; 39 (02) 148-154
  • 12 Pietrobelli A, Faith MS, Allison DB. et al. Body mass index as a measure of adiposity among children and adolescents: A validation study. The Journal of Pediatrics 1998; 132 (02) 204-210
  • 13 Quetelet MA. A Treatise on Man and the Development of his Faculties. New York: Burt Franklin; 1841
  • 14 Rodríguez G, Moreno LA, Blay VA. et al. Body fat measurement in adolescents: com-parison of skinfold thickness equations with dual-energy X-ray absorptiometry. European Journal of Clinical Nutrition 2005; 59 (10) 1158-1166
  • 15 Sergi G, de Rui M, Veronese N. et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clinical Nutrition 2015; 34: 667-673
  • 16 Snijder MB, Visser M, Dekker JM. et al. The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry. International Journal of Obesity and Related Metabolic Disorders 2002; 26 (07) 984-993
  • 17 Steinberger J, Jacobs DR, Raats S. et al. Comparison of body fatness measurements by BMI and skinfolds vs dual energy X-ray absorptiometry and their relation to cardiovascu-lar risk factors in adolescents. International Journal of Obesity 2005; 29 (11) 1346-1352
  • 18 Talma H, Chiapaw MJM, Bakker B. et al. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obesity reviews 2013; 14: 895-905
  • 19 Von Hurst PR, Walsh DCI, Conlon CA. et al. Validity and reliability of bioelectrical im-pedance analysis to estimate body fat percentage against air displacement plethysmography and dual-energy X-ray absorptiometry. Nutrition & Dietics 2016; 73: 197-204
  • 20 Wells JC, Haroun D, Williams JE. et al. Evaluation of DXA against the four-component model of body composition in obese children and adolescents aged 5-21 years. International Journal of Obesity 2010; 34 (04) 649-655