Fortschr Neurol Psychiatr 2018; 86(09): 551-558
DOI: 10.1055/a-0624-9397
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Myasthenia gravis: aktuelle Antikörperdiagnostik und Aspekte zum therapierefraktären Verlauf

Myasthenia gravis: current status of antibody diagnostics and aspects on refractory myasthenia gravis
Stephan Wenninger
Friedrich-Baur-Institut, Klinikum der Universität München
,
Benedikt Schoser
Friedrich-Baur-Institut, Klinikum der Universität München
› Author Affiliations
Further Information

Publication History

eingereicht 27 February 2018

akzeptiert 28 April 2018

Publication Date:
24 September 2018 (online)

Zusammenfassung

Die erworbene Myasthenia gravis (MG) wird durch Antikörper gegen verschiedene Bestandteile der neuromuskulären Endplatte verursacht. In den meisten Fällen wird die typische belastungsabhängige Muskelschwäche durch Antikörper gegen den Acetylcholinrezeptor (AChR) verursacht, bei einem geringeren Anteil der Patienten finden sich seltenere Antikörper gegen Muskel-spezifische Kinase (MuSK) oder verwandte Proteine wie Agrin, Cortactin oder Low-Density-Lipoproteinrezeptor-verwandtes Protein 4 (LRP4). Durch fachgerechte und konsequente Behandlung kann in der überwiegenden Mehrheit der Patienten mit Acetylcholin-Rezeptor-Antikörper (AChR-AK) positiver Myasthenie eine nahezu Vollremission mit normaler Lebenserwartung und guter Lebensqualität erreicht werden. Etwa 10 bis 15 % der Patienten sprechen nicht adäquat auf aktuell empfohlene Therapien an und bilden die Gruppe der refraktären MG. Der Artikel gibt einen Überblick über die derzeitige Antikörperdiagnostik und Aspekte zum therapierefraktären Verlauf.

Abstract

Acquired myasthenia gravis (MG) is an autoimmune disease that leads to fluctuating muscle weakness and fatigue, caused by circulating antibodies against different structures of the neuromuscular junction. In most patients, antibodies against acetylcholine receptor (AChR) can be detected. In a smaller proportion of patients with and without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin, cortactin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. With current therapy, most patients achieve a stable condition with good quality of life and normal life expectancy. Nevertheless, 10 to 15 % of patients fail to respond ad equately to current therapies and are defined as refractory myasthenia gravis. Their clinical course is characterized by recurrent episodes of severe, acute deterioration, which sometimes appear life threatening. This article gives an overview of the current state of myasthenic antibody diagnostics and recommended treatment of refractory myasthenia gravis.

 
  • Literatur

  • 1 Sieb JP. Myasthenia gravis: an update for the clinician. Clin Exp Immunol 2014; 175: 408-418 . doi:10.1111 / cei.12217
  • 2 Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present, and future. The Journal of clinical investigation 2006; 116: 2843-2854 . doi:10.1172 / JCI29894
  • 3 Vincent A, Huda S, Cao M. et al. Serological and experimental studies in different forms of myasthenia gravis. Annals of the New York Academy of Sciences 2018; 1413: 143-153 . doi:10.1111 / nyas.13592
  • 4 Illa I, Cortes-Vicente E, Martinez MA. et al. Diagnostic utility of cortactin antibodies in myasthenia gravis. Ann N Y Acad Sci 2018; 1412: 90-94 . doi:10.1111 / nyas.13502
  • 5 Querol L, Illa I. Myasthenia gravis and the neuromuscular junction. Current opinion in neurology 2013; 26: 459-465 . doi:10.1097 / WCO.0b013e328364c079
  • 6 Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. Journal of Neurology 2016; 263: 826-834 . doi: 10.1007 / s00415-015-7963-5
  • 7 Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. The Lancet Neurology 2009; 8: 475-490 . doi: 10.1016 / S1474-4422(09)70063-8
  • 8 Guptill JT, Soni M, Meriggioli MN. Current Treatment, Emerging Translational Therapies, and New Therapeutic Targets for Autoimmune Myasthenia Gravis. Neurotherapeutics 2016; 13: 118-131 . doi:10.1007 / s13311-015-0398-y
  • 9 Suh J, Goldstein JM, Nowak RJ. Clinical characteristics of refractory myasthenia gravis patients. Yale J Biol Med 2013; 86: 255-260
  • 10 Barnett C, Bril V, Kapral M. et al. Myasthenia Gravis Impairment Index: Responsiveness, meaningful change, and relative efficiency. Neurology 2017; 89: 2357-2364 . doi:10.1212 / WNL.0000000000004676
  • 11 Mantegazza R, Antozzi C. When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther Ad v Neurol Disord 2018; 11: 1756285617749134 . doi:10.1177 / 1756285617749134
  • 12 Meisel AS B, Henze T, Della Marina T, Jander S, Janzen RWC, Marx A, Schara U, Schoser B, Schroeter M, Thayssen G, Totzeck A, Urban P. Stellungnahme des Ärztlichen Beirats zur Eculizumab-Therapie. In, Deutsche Myasthenie Gesellschaft eV. 12.01.2018: Deutsche Myasthenie Gesellschaft e. V. ;. 2018
  • 13 Engel AG, Sahashi K, Fumagalli G. The immunopathology of acquired myasthenia gravis. Ann N Y Acad Sci 1981; 377: 158-174
  • 14 Kusner LL, Kaminski HJ, Soltys J. Effect of complement and its regulation on myasthenia gravis pathogenesis. Expert review of clinical immunology 2008; 4: 43-52 . doi:10.1586 / 1744666X.4.1.43
  • 15 Howard JF Jr.. Myasthenia gravis: the role of complement at the neuromuscular junction. Annals of the New York Academy of Sciences 2018; 1412: 113-128 . doi:10.1111 / nyas.13522
  • 16 Wiendl H. Diagnostik und Therapie der Myasthenia gravis und des Lambert-Eaton-Syndroms. Kommission Leitlinien der Deutschen Gesellschaft für Neurologie, editor Leitlinien in der Diagnostik und Therapie in der Neurologie 2015
  • 17 Wolfe GI, Kaminski HJ, Sonnett JR. et al. Randomized trial of thymectomy in myasthenia gravis. J Thorac Dis 2016; 8: E1782-E1783 . doi:10.21037 / jtd.2016.12.80
  • 18 Marx A, Pfister F, Schalke B. et al. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 2013; 12: 875-884 . doi:10.1016 / j.autrev.2013.03.007
  • 19 Niks EH, van Leeuwen Y, Leite MI. et al. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. Journal of Neuroimmunology 2008; 195: 151-156 . doi:10.1016 / j.jneuroim.2008.01.013
  • 20 Ghazanfari N, Morsch M, Reddel SW. et al. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction. J Physiol 2014; 592: 2881-2897 . doi:10.1113 / jphysiol.2013.270207
  • 21 Evoli A, Tonali PA, Padua L. et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain: a journal of neurology 2003; 126: 2304-2311 . doi:10.1093 / brain / awg223
  • 22 Lauriola L, Ranelletti F, Maggiano N. et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology 2005; 64: 536-538 . doi:10.1212 / 01.WNL.0000150587.71497.B6
  • 23 Cordts I, Bodart N, Hartmann K. et al. Screening for lipoprotein receptor-related protein 4-, agrin-, and titin-antibodies and exploring the autoimmune spectrum in myasthenia gravis. Journal of Neurology 2017; 264: 1193-1203 . doi:10.1007 / s00415-017-8514-z
  • 24 Shen C, Lu Y, Zhang B. et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. The Journal of clinical investigation 2013; 123: 5190-5202 . doi:10.1172 / JCI66039
  • 25 Rodriguez Cruz PM, Al-Hajjar M, Huda S. et al. Clinical Features and Diagnostic Usefulness of Antibodies to Clustered Acetylcholine Receptors in the Diagnosis of Seronegative Myasthenia Gravis. JAMA Neurol 2015; 72: 642-649 . doi:10.1001 / jamaneurol.2015.0203
  • 26 Cortes-Vicente E, Gallardo E, Martinez MA. et al. Clinical Characteristics of Patients With Double-Seronegative Myasthenia Gravis and Antibodies to Cortactin. JAMA Neurol 2016; 73: 1099-1104 . doi:10.1001 / jamaneurol.2016.2032
  • 27 Yan M, Liu Z, Fei E. et al. Induction of Anti-agrin Antibodies Causes Myasthenia Gravis in Mice. Neuroscience 2018; 373: 113-121 . doi:10.1016 / j.neuroscience.2018.01.015
  • 28 Gasperi C, Melms A, Schoser B. et al. Anti-agrin autoantibodies in myasthenia gravis. Neurology 2014; 82: 1976-1983 . doi:10.1212 / WNL.0000000000000478
  • 29 Romi F, Skeie GO, Aarli JA. et al. The severity of myasthenia gravis correlates with the serum concentration of titin and ryanodine receptor antibodies. Arch Neurol 2000; 57: 1596-1600
  • 30 Stergiou C, Lazaridis K, Zouvelou V. et al. Titin antibodies in “seronegative” myasthenia gravis – A new role for an old antigen. Journal of Neuroimmunology 2016; 292: 108-115 . doi:10.1016/j.jneuroim.2016.01.018
  • 31 Szczudlik P, Szyluk B, Lipowska M. et al. Antititin antibody in early- and late-onset myasthenia gravis. Acta neurologica Scandinavica 2014; 130: 229-233 . doi:10.1111 / ane.12271
  • 32 Wang Z, Yan Y. Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica. Front Immunol 2017; 8: 1785 . doi:10.3389 / fimmu.2017.01785
  • 33 Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group. Neurology 1998; 50: 1778-1783
  • 34 Drachman DB, Adams RN, Hu R. et al. Rebooting the immune system with high-dose cyclophosphamide for treatment of refractory myasthenia gravis. Ann N Y Acad Sci 2008; 1132: 305-314 . doi:10.1196 / annals.1405.033
  • 35 Gilhus NE. Eculizumab: a treatment option for mysthenia gravis?. Lancet Neurol 2017; 16: 947-948 . doi:10.1016 / S1474-4422(17)30363-0