Anästhesiol Intensivmed Notfallmed Schmerzther 2019; 54(01): 22-36
DOI: 10.1055/a-0625-5507
Topthema
CME-Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Diagnostik der Sepsis – Teil 1: allgemeine Diagnostik und Fokussuche-/sanierung

Diagnostic Approaches in Sepsis – Part 1: General Diagnostic Principles, Focus Identification and Source Control
Daniel C. Richter
,
Alexandra Heininger
,
Karsten Schmidt
,
Thomas Schmoch
,
Michael Bernhard
,
Philipp Mayer
,
Markus A. Weigand
,
Thorsten Brenner
Further Information

Publication History

Publication Date:
08 January 2019 (online)

Zusammenfassung

Die Sepsis ist ein medizinischer Notfall mit weiterhin hoher Sterblichkeit. Die Surviving Sepsis Campaign (SSC) gibt für die Diagnostik und die Gabe eines adäquaten Breitspektrumantibiotikums ein Zeitfenster von max. 1 h nach Stellen der Verdachtsdiagnose „Sepsis“ vor. Aktuell wird dieses sog. 1 h-Maßnahmenbündel kritisch diskutiert. Als Kernaspekt der Fokussuche orientiert sich die Art der Bildgebung am vermuteten Fokus und dem Patientenkollektiv. Bei kritisch kranken Patienten ist die kontrastmittelverstärkte Computertomografie häufig Mittel der Wahl. Die Erregerdetektion erfolgt meist kulturbasiert. Daher sind mikrobiologische Proben aus einfach zugänglichen Kompartimenten, mindestens aber die Entnahme von 2 Blutkultursets, obligat und sollten vor der Gabe eines Antibiotikums erfolgen. Von herausragender Bedeutung sind vor allem intraoperative Abstriche aus sonst sterilen Kompartimenten. Suspekte Katheter (z. B. zentralvenöse Katheter, Dialysekatheter) oder potenziell infizierte implantierte Medizinprodukte (z. B. Schrittmacher, Defibrillatoren) sollten – wenn vertretbar – zügig entfernt und einer mikrobiologischen Aufarbeitung zugeführt werden. Generell sollten alle notwendigen Maßnahmen zur Fokussanierung/-kontrolle so schnell wie medizinisch/logistisch möglich, mindestens aber innerhalb von 6(– 12)h nach Beginn der Sepsis, erfolgt sein. Es existiert bislang kein spezifischer Biomarker für das Krankheitsbild der Sepsis. Biomarker wie das Procalcitonin (PCT) und das C-reaktive Protein (CRP) spielen im Kontext der Sepsis beim infektiologischen Management und Therapiemonitoring auf der Intensivstation eine wichtige Rolle. Vielversprechende Biomarker wie das midregionale Pro-Adrenomedullin (MR-proADM) oder das Presepsin werden außerhalb von Studien noch nicht in der klinischen Routine eingesetzt. Als Marker von Mikrozirkulationsstörungen und eines gestörten Metabolismus spielt das Laktat (bzw. die Laktat-Clearance) als prognostischer Parameter der Sepsis eine große Rolle.

Die Sepsis ist ein medizinischer Notfall mit weiterhin hoher Sterblichkeit. Die besondere Herausforderung besteht darin, eine adäquate Diagnostik und entsprechende antiinfektive Therapie in möglichst kurzer Zeit nach Stellen der Verdachtsdiagnose durchzuführen. Teil 1 dieses Beitrags behandelt dabei die allgemeine Diagnostik und Fokussuche bzw. -sanierung, Teil 2 die Erregeridentifizierung.

Abstract

Sepsis and septic shock represent medical emergencies with persistently high mortality rates. According to the lately revised Surviving Sepsis Campaign (SSC) guidelines, focus identification/pathogen detection and the initial administration of broad-spectrum antibiotics are to be secluded within one hour after recognition of the symptoms of sepsis. However, there is dispute concerning the so called hour-1 bundle. Being a core aspect of focus identification, imaging modalities mainly depend on the suspected site of infection and the individual patient. Contrast agent-enhanced computed tomography (CT) is the modality usually used in critically ill patients. The microbiological pathogen detection still largely remains culture-based. This emphasizes the significance of microbiological specimen obtained from easily accessible body compartments and at least 2 blood culture sets. If possible, blood cultures should be drawn prior to antibiotic administration. Intraoperatively obtained swabs of otherwise sterile body compartments are of utmost importance with regard to microbiological pathogen detection. Catheters and implanted medical devices (i.e. cardiac pacemakers or defibrillators) suspicious of infection should be explanted and sent in for microbiological workup as soon as possible. All necessary source control measures should be realized as soon as medically possible but at least within 6 – (12) hours after the onset of symptoms. There is no specific biomarker for sepsis so far. Procalcitonin (PCT) and C-reactive protein (CRP) are crucial biomarkers in terms of infectious disease management and guidance of antimicrobial therapy in the ICU. Positive clinical trials showed that biomarkers like the midregional pro-adrenomedullin (MR-proADM) or presepsin might be promising candidates in the diagnosis of sepsis in the future. As an important marker of microcirculatory failure and disrupted cell metabolism, lactate serum concentrations (and lactate-clearance, respectively) are of prognostic value in septic patients.

Kernaussagen
  • Die Sepsis wird als eine lebensbedrohliche Organdysfunktion auf dem Boden einer dysregulierten Wirtsantwort durch eine (wahrscheinliche) Infektion verstanden.

  • Die Diagnose der Sepsis erfolgt nach Leitlinie der SSC unabhängig von Biomarkern unter Verwendung klinischer Parameter und des SOFA-Scores.

  • Fokussuche (hier vor allem Anamnese, klinische Untersuchung, Blutkulturen, Bildgebung), hämodynamische Stabilisierung und die empirische Gabe eines Breitspektrumantibiotikums sind Kernelemente des „hour-1 bundles“ und sollten höchste Priorität genießen.

  • Das kontrastmittelunterstützte CT ist ein zeitsparendes Verfahren, das gleichzeitig viele potenzielle Infektionsfoci darstellen kann. Vorteil ist, dass auch kritisch kranke, beatmete Patienten fast problemlos dieser Untersuchung zugeführt werden können.

  • Sonografische Verfahren können im Einzelfall zur Fokussuche angewendet werden (Endokarditis, Empyeme), kommen aber eher auf der Intensivstation im Rahmen der differenzierten Herz-Kreislauf-Therapie zum Einsatz (Lungensonografie, HZV-Messung und Katecholaminsteuerung).

  • Die Entnahme weiterer mikrobiologischer Proben (respiratorische Sekrete, Urin, Abstriche usw.) sollte in der Initialphase kritisch gegenüber dem möglichen Zeitverlust evaluiert werden.

  • Die Sanierung des Infektionsfokus sollte so schnell wie medizinisch vertretbar/logistisch möglich erfolgen, längstens jedoch innerhalb von 6(– 12)h realisiert sein.

  • Grundsätzlich sollte die initiale Versorgung des septischen Patienten überlappend und parallel – analog der Schwerstverletztenversorgung – erfolgen. Dazu zählt auch, dass wichtige Schritte wie die hämodynamische Stabilisierung und die erweiterte mikrobiologische Diagnostik u. U. während der Fokussanierung im OP als parallele Arbeitsschritte erfolgen müssen.

  • Eine Diagnosestellung der Sepsis aufgrund von Biomarkern ist nicht möglich. Weder existieren spezifische Sepsis-Biomarker, noch sind die in der Routine verwendeten Infektions-Biomarker (CRP, PCT) hinreichend sensitiv und spezifisch, um eine Sepsis sicher anzuzeigen bzw. auszuschließen. Ihr Stellenwert liegt vielmehr im Therapiemonitoring und im Nachweis der Effektivität der antimikrobiellen Therapie.

  • Grundpfeiler der mikrobiologischen Diagnostik sind weiterhin der kulturelle Erregernachweis und die Resistenztestung.

 
  • Literatur

  • 1 Singer M, Deutschman CS, Seymour CW. et al.. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016; 315: 801-810
  • 2 Levy MM, Fink MP, Marshall JC. et al.. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 2003; 29: 530-538
  • 3 Bone RC, Balk RA, Cerra FB. et al.. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101: 1644-1655
  • 4 Kaukonen KM, Bailey M, Pilcher D. et al.. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med 2015; 372: 1629-1638 doi:10.1056/NEJMoa1415236
  • 5 Rhodes A, Evans LE, Alhazzani W. et al.. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43: 304-377 doi:10.1007/s00134-017-4683-6
  • 6 Parlato M, Philippart F, Rouquette A. et al.. Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study. Intensive Care Med 2018; 44: 1061-1070 doi:10.1007/s00134-018-5228-3
  • 7 Schmoch T, Bernhard M, Uhle F. et al.. Neue SEPSIS-3-Definition. Anaesthesist 2017; 66: 614-621 doi:10.1007/s00101-017-0316-2
  • 8 Richter D, Heininger A, Brenner T. et al.. Bakterielle Sepsis. Anaesthesist 2017; 66: 737-761
  • 9 Kumar A, Roberts D, Wood KE. et al.. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34: 1589-1596 doi:10.1097/01.CCM.0000217961.75225.E9
  • 10 Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med 2018; 44: 925-928
  • 11 Singer M. Antibiotics for Sepsis – Does Each Hour Really Count? Or is it Incestuous Amplification?. Am J Respir Crit Care Med 2017; 196: 800-802 doi:10.1164/rccm.201703-0621ED
  • 12 Gilbert DN, Kalil AC, Klompas M. et al.. IDSA Position Statement: Why IDSA did not endorse the surviving sepsis campaign guidelines. Clin Infect Dis 2018; 66: 1631-1635 doi:10.1093/cid/cix997
  • 13 Lichtenstern C, Brenner T, Bardenheuer HJ. et al.. Predictors of survival in sepsis: what is the best inflammatory marker to measure?. Curr Opin Infect Dis 2012; 25: 328-336 doi:10.1097/QCO.0b013e3283522038
  • 14 Siegler BH, Weiterer S, Lichtenstern C. et al.. [Use of biomarkers in sepsis. Update and perspectives]. Anaesthesist 2014; 63: 678-690 doi:10.1007/s00101-014-2347-2
  • 15 Simon L, Gauvin F, Amre DK. et al.. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 2004; 39: 206-217
  • 16 Uzzan B, Cohen R, Nicolas P. et al.. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006; 34: 1996-2003 doi:10.1097/01.CCM.0000226413.54364.36
  • 17 Limper M, De Kruif M, Duits A. et al.. The diagnostic role of procalcitonin and other biomarkers in discriminating infectious from non-infectious fever. J Infect 2010; 60: 409-416
  • 18 Jekarl DW, Lee SY, Lee J. et al.. Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis 2013; 75: 342-347
  • 19 Wacker C, Prkno A, Brunkhorst FM. et al.. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis 2013; 13: 426-435 doi:10.1016/s1473-3099(12)70323-7
  • 20 Dandona P, Nix D, Wilson MF. et al.. Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metabol 1994; 79: 1605-1608
  • 21 Brunkhorst F, Heinz U, Forycki Z. Kinetics of procalcitonin in iatrogenic sepsis. Intensive Care Med 1998; 24: 888-889
  • 22 Assicot M, Bohuon C, Gendrel D. et al.. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341: 515-518
  • 23 Harbarth S, Holeckova K, Froidevaux C. et al.. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 2001; 164: 396-402
  • 24 Tang BM, Eslick GD, Craig JC. et al.. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis 2007; 7: 210-217 doi:10.1016/s1473-3099(07)70052-x
  • 25 Schuetz P, Birkhahn R, Sherwin R. et al.. Serial Procalcitonin Predicts Mortality in Severe Sepsis Patients: Results From the Multicenter Procalcitonin MOnitoring SEpsis (MOSES) Study. Crit Care Med 2017; 45: 781
  • 26 Bloos F, Marshall JC, Dellinger RP. et al.. Multinational, observational study of procalcitonin in ICU patients with pneumonia requiring mechanical ventilation: a multicenter observational study. Crit Care 2011; 15: R88 doi:10.1186/cc10087
  • 27 Schuetz P, Briel M, Christ-Crain M. et al.. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 2012; 55: 651-662
  • 28 Schuetz P, Muller B, Christ-Crain M. et al.. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evidence-Based Child Health 2013; 8: 1297-1371
  • 29 Matthaiou DK, Ntani G, Kontogiorgi M. et al.. An ESICM systematic review and meta-analysis of procalcitonin-guided antibiotic therapy algorithms in adult critically ill patients. Intensive Care Med 2012; 38: 940-949
  • 30 Huang DT, Yealy DM, Filbin MR. et al.. Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection. N Engl J Med 2018; 379: 236-249
  • 31 Oliveira CF, Botoni FA, Oliveira CR. et al.. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med 2013; 41: 2336-2343
  • 32 Prkno A, Wacker C, Brunkhorst FM. et al.. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock–a systematic review and meta-analysis. Crit Care 2013; 17: R291
  • 33 de Jong E, van Oers JA, Beishuizen A. et al.. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 2016; 16: 819-827 doi:10.1016/S1473-3099(16)00053-0
  • 34 Hohn A, Balfer N, Heising B. et al.. Adherence to a procalcitonin-guided antibiotic treatment protocol in patients with severe sepsis and septic shock. Ann Intensive Care 2018; 8: 68
  • 35 Bloos F, Trips E, Nierhaus A. et al.. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Intern Med 2016; 176: 1266-1276
  • 36 Kopterides P, Siempos II, Tsangaris I. et al.. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med 2010; 38: 2229-2241
  • 37 Schuetz P, Chiappa V, Briel M. et al.. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med 2011; 171: 1322-1331
  • 38 Bouadma L, Luyt CE, Tubach F. et al.. Use of procalcitonin to reduce patientsʼ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375: 463-474
  • 39 Schuetz P, Wirz Y, Sager R. et al.. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 2017; (10) CD007498
  • 40 Sawyer RG, Claridge JA, Nathens AB. et al.. Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med 2015; 372: 1996-2005
  • 41 Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805-1812
  • 42 Bloos F, Reinhart K. Rapid diagnosis of sepsis. Virulence 2014; 5: 154-160
  • 43 Clyne B, Olshaker JS. The C-reactive protein. J Emerg Med 1999; 17: 1019-1025
  • 44 Povoa P, Coelho L, Almeida E. et al.. C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect 2005; 11: 101-108
  • 45 Schmit X, Vincent JL. The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection 2008; 36: 213-219
  • 46 Welsch T, Frommhold K, Hinz U. et al.. Persisting elevation of C-reactive protein after pancreatic resections can indicate developing inflammatory complications. Surgery 2008; 143: 20-28 doi:10.1016/j.surg.2007.06.010
  • 47 Vincent JL, Opal SM, Marshall JC. et al.. Sepsis definitions: time for change. Lancet 2013; 381: 774
  • 48 Schlüter B, König B, Bergmann U. et al.. Interleukin 6–a potential mediator of lethal sepsis after major thermal trauma: evidence for increased IL-6 production by peripheral blood mononuclear cells. J Trauma 1991; 31: 1663-1670
  • 49 Tsalik EL, Jaggers LB, Glickman SW. et al.. Discriminative value of inflammatory biomarkers for suspected sepsis. J Emerg Med 2012; 43: 97-106
  • 50 Oberhoffer M, Russwurm S, Bredle D. et al.. Discriminative power of inflammatory markers for prediction of tumor necrosis factor-alpha and interleukin-6 in ICU patients with systemic inflammatory response syndrome (SIRS) or sepsis at arbitrary time points. Intensive Care Med 2000; 26: S170-S174
  • 51 Panacek EA, Marshall JC, Albertson TE. et al.. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F (ab-) 2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med 2004; 32: 2173-2182
  • 52 Andaluz-Ojeda D, Bobillo F, Iglesias V. et al.. A combined score of pro-and anti-inflammatory interleukins improves mortality prediction in severe sepsis. Cytokine 2012; 57: 332-336
  • 53 Henriquez-Camacho C, Losa J. Biomarkers for sepsis. Biomed Res Int 2014; 2014: 547818 doi:10.1155/2014/547818
  • 54 Yaegashi Y, Sato N, Suzuki Y. et al.. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother 2005; 11: 234-238
  • 55 Shozushima T, Takahashi G, Matsumoto N. et al.. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J Infect Chemother 2011; 17: 764-769
  • 56 Endo S, Suzuki Y, Takahashi G. et al.. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J Infect Chemother 2012; 18: 891-897
  • 57 Ulla M, Pizzolato E, Lucchiari M. et al.. Diagnostic and prognostic value of presepsin in the management of sepsis in the emergency department: a multicenter prospective study. Crit Care 2013; 17: R168
  • 58 Suberviola B, Castellanos A, Astudillo LG. et al.. Prognostic value of proadrenomedullin in severe sepsis and septic shock patients with community-acquired pneumonia. Crit Care 2011; 15: 1-190
  • 59 Suberviola B, Castellanos-Ortega A, Ruiz AR. et al.. Hospital mortality prognostication in sepsis using the new biomarkers suPAR and proADM in a single determination on ICU admission. Intensive Care Med 2013; 39: 1945-1952
  • 60 Andaluz-Ojeda D, Nguyen HB, Meunier-Beillard N. et al.. Superior accuracy of mid-regional proadrenomedullin for mortality prediction in sepsis with varying levels of illness severity. Ann Intensive Care 2017; 7: 15
  • 61 Angeletti S, Battistoni F, Fioravanti M. et al.. Procalcitonin and mid-regional pro-adrenomedullin test combination in sepsis diagnosis. Clin Chem Lab Med 2013; 51: 1059-1067
  • 62 Decker SO, Sigl A, Grumaz C. et al.. Immune-response patterns and next generation sequencing diagnostics for the detection of mycoses in patients with septic shock – results of a combined clinical and experimental investigation. Int J Mol Sci 2017; 18: 1796
  • 63 Morgenthaler NG, Struck J, Alonso C. et al.. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin Chem 2005; 51: 1823-1829
  • 64 Casserly B, Phillips GS, Schorr C. et al.. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med 2015; 43: 567-573 doi:10.1097/CCM.0000000000000742
  • 65 Nguyen HB, Rivers EP, Knoblich BP. et al.. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 2004; 32: 1637-1642 doi:10.1097/01.ccm.0000132904.35713.a7
  • 66 Gu WJ, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med 2015; 41: 1862
  • 67 Bloos F, Thomas-Rüddel D, Rüddel H. et al.. Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study. Crit Care 2014; 18: R42
  • 68 Bloos F, Rüddel H, Thomas-Rüddel D. et al.. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: a cluster randomized trial. Intensive Care Med 2017; 43: 1602-1612 doi:10.1007/s00134-017-4782-4
  • 69 Tellor B, Skrupky LP, Symons W. et al.. Inadequate source control and inappropriate antibiotics are key determinants of mortality in patients with intra-abdominal sepsis and associated bacteremia. Surg Infect 2015; 16: 785-793
  • 70 Solomkin JS, Mazuski JE, Bradley JS. et al.. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg Infect 2010; 11: 79-109
  • 71 Cardoso T, Carneiro AH, Ribeiro O. et al.. Reducing mortality in severe sepsis with the implementation of a core 6-hour bundle: results from the Portuguese community-acquired sepsis study (SACiUCI study). Crit Care 2010; 14: R83
  • 72 Long B, Koyfman A. Best clinical practice: Blood culture utility in the emergency department. J Emerg Med 2016; 51: 529-539
  • 73 Pien BC, Sundaram P, Raoof N. et al.. The clinical and prognostic importance of positive blood cultures in adults. Am J Med 2010; 123: 819-828
  • 74 Lee A, Mirrett S, Reller LB. et al.. Detection of bloodstream infections in adults: how many blood cultures are needed?. J Clin Microbiol 2007; 45: 3546-3548
  • 75 Cockerill F, Wilson J, Vetter E. et al.. Optimal testing parameters for blood cultures. Clin Infect Dis 2004; 38: 1724-1730
  • 76 Zadroga R, Williams DN, Gottschall R. et al.. Comparison of 2 blood culture media shows significant differences in bacterial recovery for patients on antimicrobial therapy. Clin Infect Dis 2013; 56: 790-797
  • 77 Kanegaye JT, Soliemanzadeh P, Bradley JS. Lumbar puncture in pediatric bacterial meningitis: defining the time interval for recovery of cerebrospinal fluid pathogens after parenteral antibiotic pretreatment. Pediatrics 2001; 108: 1169-1174
  • 78 Baron EJ, Miller JM, Weinstein MP. et al.. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM). Clin Infect Dis 2013; 57: e22-e121
  • 79 Vaughn VM, Chopra V. Revisiting the panculture. BMJ Qual Saf 2017; 26: 236-239
  • 80 Barkhausen J, Stöblen F, Dominguez-Fernandez E. et al.. Impact of CT in patients with sepsis of unknown origin. Acta Radiol 1999; 40: 552-555
  • 81 Karhu J, Ala-Kokko T, Ahvenjärvi L. et al.. Early chest computed tomography in adult acute severe community-acquired pneumonia patients treated in the intensive care unit. Acta Anaesthesiol Scand 2016; 60: 1102-1110
  • 82 Dobrin PB, Gully PH, Greenlee HB. et al.. Radiologic diagnosis of an intra-abdominal abscess: Do multiple tests help?. Arch Surg 1986; 121: 41-46
  • 83 Renwick I. Postoperative abdominal sepsis: imaging and percutaneous management. Surgery (Oxford) 2015; 33: 550-552
  • 84 Oto A, Schmid-Tannwald C, Agrawal G. et al.. Diffusion-weighted MR imaging of abdominopelvic abscesses. Emerg Radiol 2011; 18: 515-524
  • 85 Baysal T, Bulut T, Gökirmak M. et al.. Diffusion-weighted MR imaging of pleural fluid: differentiation of transudative vs. exudative pleural effusions. Eur Radiol 2004; 14: 890-896
  • 86 Sans N, Faruch M, Lapègue F. et al.. Infections of the spinal column-spondylodiscitis. Diagn Interv Imaging 2012; 93: 520-529
  • 87 Weber W, Henkes H, Felber S. et al.. Septisch-embolischer und septisch-metastatischer Hirnabszess. Radiologe 2000; 40: 1017-1029
  • 88 Jaques P, Mauro M, Safrit H. et al.. CT features of intraabdominal abscesses: prediction of successful percutaneous drainage. Am J Roentgenol 1986; 146: 1041-1045
  • 89 Veillette G, Dominguez I, Ferrone C. et al.. Implications and management of pancreatic fistulas following pancreaticoduodenectomy: the Massachusetts General Hospital experience. Arch Surg 2008; 143: 476-481
  • 90 Fort R, Ledochowski S, Friggeri A. PET-CT in Critically Ill Patients: Diagnosing the Unsuspected. Crit Care Med 2018; 46: e166-e169
  • 91 Levitov A, Frankel HL, Blaivas M. et al.. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-part II: cardiac ultrasonography. Crit Care Med 2016; 44: 1206-1227
  • 92 Frankel HL, Kirkpatrick AW, Elbarbary M. et al.. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-part I: general ultrasonography. Crit Care Med 2015; 43: 2479-2502
  • 93 Manno E, Navarra M, Faccio L. et al.. Deep Impact of Ultrasound in the Intensive Care Unit: the “ICU-sound” Protocol. J Am Soc Anesthesiol 2012; 117: 801-809
  • 94 Vignon P, Repessé X, Vieillard-Baron A. et al.. Critical care ultrasonography in acute respiratory failure. Crit Care 2016; 20: 228
  • 95 Spencer KT, Kimura BJ, Korcarz CE. et al.. Focused cardiac ultrasound: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 2013; 26: 567-581
  • 96 Bernier-Jean A, Albert M, Shiloh AL. et al.. The diagnostic and therapeutic impact of point-of-care ultrasonography in the intensive care unit. J Intensive Care Med 2017; 32: 197-203
  • 97 Shokoohi H, Boniface KS, Pourmand A. et al.. Bedside ultrasound reduces diagnostic uncertainty and guides resuscitation in patients with undifferentiated hypotension. Crit Care Med 2015; 43: 2562-2569
  • 98 Baddour LM, Wilson WR, Bayer AS. et al.. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation 2015; 132: 1435-1486
  • 99 Habib G, Lancellotti P, Antunes MJ. et al.. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 2015; 36: 3075-3128
  • 100 Li JS, Sexton DJ, Mick N. et al.. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis 2000; 30: 633-638
  • 101 Hoey ET, Gulati GS, Ganeshan A. et al.. Cardiovascular MRI for assessment of infectious and inflammatory conditions of the heart. Am J Roentgenol 2011; 197: 103-112